Sorting list of two-dimensional coordinates by clockwise angle using Python?

依然范特西╮ 提交于 2019-12-20 10:27:57

问题


I have a set of points with x and y coordinates that can be seen in the figure below. The coordinates of the 9 points were stored in a list as follows:

L = [[5,2], [4,1], [3.5,1], [1,2], [2,1], [3,1], [3,3], [4,3] , [2,3]]

The idea is to sort the points clockwise from an origin. In this case, the origin is the point that is colored and that has an arrow that indicates the direction of the ordering. Do not worry about creating methodology to determine the origin because it is already solved.

Thus, after being ordered, the list L should be as follows:

L = [[2,3], [3,3], [4,3], [5,2], [4,1], [3.5,1], [3,1], [2,1], [1,2]]

Note that the x and y coordinates are not changed. What changes is the storage order.

Do you have any idea of an algorithm, script or methodology for this problem in the python language?


回答1:


With a bit of trigonometry it's not that hard. Maybe you know but the angle between two (normalized) vectors is acos(vec1 * vec2). However this calculates only the projected angle but one could use atan2 to calculate the direction-aware angle.

To this means a function calculating it and then using it as key for sorting would be a good way:

import math

pts = [[2,3], [5,2],[4,1],[3.5,1],[1,2],[2,1],[3,1],[3,3],[4,3]]
origin = [2, 3]
refvec = [0, 1]

def clockwiseangle_and_distance(point):
    # Vector between point and the origin: v = p - o
    vector = [point[0]-origin[0], point[1]-origin[1]]
    # Length of vector: ||v||
    lenvector = math.hypot(vector[0], vector[1])
    # If length is zero there is no angle
    if lenvector == 0:
        return -math.pi, 0
    # Normalize vector: v/||v||
    normalized = [vector[0]/lenvector, vector[1]/lenvector]
    dotprod  = normalized[0]*refvec[0] + normalized[1]*refvec[1]     # x1*x2 + y1*y2
    diffprod = refvec[1]*normalized[0] - refvec[0]*normalized[1]     # x1*y2 - y1*x2
    angle = math.atan2(diffprod, dotprod)
    # Negative angles represent counter-clockwise angles so we need to subtract them 
    # from 2*pi (360 degrees)
    if angle < 0:
        return 2*math.pi+angle, lenvector
    # I return first the angle because that's the primary sorting criterium
    # but if two vectors have the same angle then the shorter distance should come first.
    return angle, lenvector

A sorted run:

>>> sorted(pts, key=clockwiseangle_and_distance)
[[2, 3], [3, 3], [4, 3], [5, 2], [4, 1], [3.5, 1], [3, 1], [2, 1], [1, 2]]

and with a rectangular grid around the origin this works as expected as well:

>>> origin = [2,3]
>>> refvec = [0, 1]
>>> pts = [[1,4],[2,4],[3,4],[1,3],[2,3],[3,3],[1,2],[2,2],[3,2]]
>>> sorted(pts, key=clockwiseangle_and_distance)
[[2, 3], [2, 4], [3, 4], [3, 3], [3, 2], [2, 2], [1, 2], [1, 3], [1, 4]]

even if you change the reference vector:

>>> origin = [2,3]
>>> refvec = [1,0]  # to the right instead of pointing up
>>> pts = [[1,4],[2,4],[3,4],[1,3],[2,3],[3,3],[1,2],[2,2],[3,2]]
>>> sorted(pts, key=clockwiseangle_and_distance)
[[2, 3], [3, 3], [3, 2], [2, 2], [1, 2], [1, 3], [1, 4], [2, 4], [3, 4]]

Thanks @Scott Mermelstein for the better function name and @f5r5e5d for the atan2 suggestion.




回答2:


this should illustrate the issues, gives a visualization tool

but it doesn't work every time for the getting the correct entry point for a group of points at the same distance

import random
import pylab
import cmath
from itertools import groupby 


pts = [(random.randrange(-5,5), random.randrange(-5,5)) for _ in range(10)]

# for this problem complex numbers are just too good to pass up

z_pts = [ i[0] + 1j*i[1] for i in pts if i != (0, 0)]

z_pts.sort(key = lambda x: abs(x))

gpts = [[*g] for _, g in groupby(z_pts, key = lambda x: abs(x) ) ]
print(*gpts, sep='\n')

spts = [1j/2]

for e in gpts:
    if len(e) > 1:
        se = sorted(e, key = lambda x: cmath.phase(-x / spts[-1]))
        spts += se
    else:
        spts += e

print(spts)

def XsYs(zs):
    xs = [z.real for z in zs]
    ys = [z.imag for z in zs]
    return xs, ys

def SpiralSeg(a, b):
    '''
    construct a clockwise spiral segment connecting
    ordered points a, b specified as complex numbers

    Inputs
        a, b complex numbers
    Output
        list of complex numbers
    '''
    seg = [a]
    if a == 0 or a == b:
        return seg
    # rotation interpolation with complex numbers!
    rot = ( b / a ) ** ( 1 / 30 ) 
    # impose cw rotation direction constraint
    if cmath.phase( b / a ) > 0: # add a halfway point to force long way around
        plr = cmath.polar( b / a )
        plr = (plr[0]**(1/2), plr[1] / 2 - 1 * cmath.pi ) # the rotor/2
        a_b = cmath.rect(*plr) * a   # rotate the start point halfway round   
        return SpiralSeg(a, a_b) + (SpiralSeg(a_b, b))

    for _ in range(30):
        a *= rot 
        seg.append(a)
    return seg  

segs = [SpiralSeg(a, b) for a, b in zip(spts, spts[1:])]

pylab.axes().set_aspect('equal', 'datalim')

pylab.scatter(*XsYs(z_pts))
for seg in segs:
   pylab.plot(*XsYs(seg))

[(1-2j), (-2-1j)]
[(2-3j)]
[(1+4j)]
[(3+3j)]
[(-3-4j), (3-4j), (4-3j)]
[(1-5j)]
[(-4-4j)]
[0.5j, (-2-1j), (1-2j), (2-3j), (1+4j), (3+3j), (-3-4j), (3-4j), (4-3j), (1-5j), (-4-4j)]

[-1j]
[(-1-1j)]
[(-1-2j), (-1+2j), (2+1j)]
[(-4+0j)]
[(1-4j)]
[-5j, (-4-3j)]
[(1-5j)]
[0.5j, -1j, (-1-1j), (-1-2j), (2+1j), (-1+2j), (-4+0j), (1-4j), (-4-3j), -5j, (1-5j)]



来源:https://stackoverflow.com/questions/41855695/sorting-list-of-two-dimensional-coordinates-by-clockwise-angle-using-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!