问题
I have created a simple function for facerecognition by using the facerecognizer from OpenCV. It works all fine with images from people.
Now I would like to make a test by using handwritten characters instead of people. I came across MNIST dataset, but they store images in a weird file which I have never seen before.
I simply need to extract a few images from:
train-images.idx3-ubyte
and save them in a folder as .gif
Or am I missunderstand this MNIST thing. If yes where could I get such a dataset?
EDIT
I also have the gzip file:
train-images-idx3-ubyte.gz
I am trying to read the content, but show()
does not work and if I read()
I see random symbols.
images = gzip.open("train-images-idx3-ubyte.gz", 'rb')
print images.read()
EDIT
Managed to get some usefull output by using:
with gzip.open('train-images-idx3-ubyte.gz','r') as fin:
for line in fin:
print('got line', line)
Somehow I have to convert this now to an image, output:
回答1:
Download the training/test images and labels:
- train-images-idx3-ubyte.gz: training set images
- train-labels-idx1-ubyte.gz: training set labels
- t10k-images-idx3-ubyte.gz: test set images
- t10k-labels-idx1-ubyte.gz: test set labels
And uncompress them in a workdir, say samples/
.
Get the python-mnist package from PyPi:
pip install python-mnist
Import the mnist
package and read the training/test images:
from mnist import MNIST
mndata = MNIST('samples')
images, labels = mndata.load_training()
# or
images, labels = mndata.load_testing()
To display an image to the console:
index = random.randrange(0, len(images)) # choose an index ;-)
print(mndata.display(images[index]))
You'll get something like this:
............................
............................
............................
............................
............................
.................@@.........
..............@@@@@.........
............@@@@............
..........@@................
..........@.................
...........@................
...........@................
...........@...@............
...........@@@@@.@..........
...........@@@...@@.........
...........@@.....@.........
..................@.........
..................@@........
..................@@........
..................@.........
.................@@.........
...........@.....@..........
...........@....@@..........
............@@@@............
.............@..............
............................
............................
............................
Explanation:
- Each image of the images list is a Python
list
of unsigned bytes. - The labels is an Python
array
of unsigned bytes.
回答2:
(Using only matplotlib, gzip and numpy)
Extract image data:
import gzip
f = gzip.open('train-images-idx3-ubyte.gz','r')
image_size = 28
num_images = 5
import numpy as np
f.read(16)
buf = f.read(image_size * image_size * num_images)
data = np.frombuffer(buf, dtype=np.uint8).astype(np.float32)
data = data.reshape(num_images, image_size, image_size, 1)
Print images:
import matplotlib.pyplot as plt
image = np.asarray(data[2]).squeeze()
plt.imshow(image)
plt.show()
Print first 50 labels:
f = gzip.open('train-labels-idx1-ubyte.gz','r')
f.read(8)
for i in range(0,50):
buf = f.read(1)
labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
print(labels)
回答3:
You could actually use the idx2numpy package available at PyPI. It's extremely simple to use and directly converts the data to numpy arrays. Here's what you have to do:
Downloading the data
Download the MNIST dataset from the official website.
If you're using Linux then you can use wget to get it from command line itself. Just run:
wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Decompressing the data
Unzip or decompress the data. On Linux, you could use gzip
Ultimately, you should have the following files:
data/train-images-idx3-ubyte
data/train-labels-idx1-ubyte
data/t10k-images-idx3-ubyte
data/t10k-labels-idx1-ubyte
The prefix data/
is just because I've extracted them into a folder named data
. Your question looks like you're well done till here, so keep reading.
Using idx2numpy
Here's a simple python code to read everything from the decompressed files as numpy arrays.
import idx2numpy
import numpy as np
file = 'data/train-images-idx3-ubyte'
arr = idx2numpy.convert_from_file(file)
# arr is now a np.ndarray type of object of shape 60000, 28, 28
You can now use it with OpenCV juts the same way how you display any other image, using something like
cv.imshow("Image", arr[4])
To install idx2numpy, you can use PyPI (pip
package manager). Simply run the command:
pip install idx2numpy
回答4:
Use this to extract mnist database to images and csv labels in python :
https://github.com/sorki/python-mnist
来源:https://stackoverflow.com/questions/40427435/extract-images-from-idx3-ubyte-file-or-gzip-via-python