Define custom LSTM Cell in Keras?

こ雲淡風輕ζ 提交于 2019-11-27 07:08:33

问题


I use Keras with TensorFlow as back-end. If I want to make a modification to an LSTM cell, such as "removing" the output gate, how can I do it? It is a multiplicative gate, so somehow I will have to set it to fixed values so that whatever multiplies it, has no effect.


回答1:


First of all, you should define your own custom layer. If you need some intuition how to implement your own cell see LSTMCell in Keras repository. E.g. your custom cell will be:

class MinimalRNNCell(keras.layers.Layer):

    def __init__(self, units, **kwargs):
        self.units = units
        self.state_size = units
        super(MinimalRNNCell, self).__init__(**kwargs)

    def build(self, input_shape):
        self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
                                      initializer='uniform',
                                      name='kernel')
        self.recurrent_kernel = self.add_weight(
            shape=(self.units, self.units),
            initializer='uniform',
            name='recurrent_kernel')
        self.built = True

    def call(self, inputs, states):
        prev_output = states[0]
        h = K.dot(inputs, self.kernel)
        output = h + K.dot(prev_output, self.recurrent_kernel)
        return output, [output]

Then, use tf.keras.layers.RNN to use your cell:

cell = MinimalRNNCell(32)
x = keras.Input((None, 5))
layer = RNN(cell)
y = layer(x)

# Here's how to use the cell to build a stacked RNN:

cells = [MinimalRNNCell(32), MinimalRNNCell(64)]
x = keras.Input((None, 5))
layer = RNN(cells)
y = layer(x)


来源:https://stackoverflow.com/questions/54231440/define-custom-lstm-cell-in-keras

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!