问题
I am relatively new to Spark and Scala.
I am starting with the following dataframe (single column made out of a dense Vector of Doubles):
scala> val scaledDataOnly_pruned = scaledDataOnly.select("features")
scaledDataOnly_pruned: org.apache.spark.sql.DataFrame = [features: vector]
scala> scaledDataOnly_pruned.show(5)
+--------------------+
| features|
+--------------------+
|[-0.0948337274182...|
|[-0.0948337274182...|
|[-0.0948337274182...|
|[-0.0948337274182...|
|[-0.0948337274182...|
+--------------------+
A straight conversion to RDD yields an instance of org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] :
scala> val scaledDataOnly_rdd = scaledDataOnly_pruned.rdd
scaledDataOnly_rdd: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[32] at rdd at <console>:66
Does anyone know how to convert this DF to an instance of org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector] instead? My various attempts have been unsuccessful so far.
Thank you in advance for any pointers!
回答1:
Just found out:
val scaledDataOnly_rdd = scaledDataOnly_pruned.map{x:Row => x.getAs[Vector](0)}
回答2:
EDIT: use more sophisticated way to interpret fields in Row.
This is worked for me
val featureVectors = features.map(row => {
Vectors.dense(row.toSeq.toArray.map({
case s: String => s.toDouble
case l: Long => l.toDouble
case _ => 0.0
}))
})
features is a DataFrame of spark SQL.
回答3:
import org.apache.spark.mllib.linalg.Vectors
scaledDataOnly
.rdd
.map{
row => Vectors.dense(row.getAs[Seq[Double]]("features").toArray)
}
来源:https://stackoverflow.com/questions/33048177/converting-rddorg-apache-spark-sql-row-to-rddorg-apache-spark-mllib-linalg-ve