问题
Is there a way to initialize cluster centers while running K-Means in Spark MLlib?
I tried following :
model = KMeans.train(
sc.parallelize(data), 3, maxIterations=0,
initialModel = KMeansModel([(-1000.0,-1000.0),(5.0,5.0),(1000.0,1000.0)]))
initialModel
and setInitialModel
are not present in spark-mllib_2.10
回答1:
Initial model can set in Scala since Spark 1.5+ using setInitialModel
which takes KMeansModel
:
import org.apache.spark.mllib.clustering.{KMeans, KMeansModel}
import org.apache.spark.mllib.linalg.Vectors
val data = sc.parallelize(Seq(
"[0.0, 0.0]", "[1.0, 1.0]", "[9.0, 8.0]", "[8.0, 9.0]"
)).map(Vectors.parse(_))
val initialModel = new KMeansModel(
Array("[0.6, 0.6]", "[8.0, 8.0]").map(Vectors.parse(_))
)
val model = new KMeans()
.setInitialModel(initialModel)
.setK(2)
.run(data)
and PySpark 1.6+ using initialModel
parameter to train
method:
from pyspark.mllib.clustering import KMeansModel, KMeans
from pyspark.mllib.linalg import Vectors
data = sc.parallelize([
"[0.0, 0.0]", "[1.0, 1.0]", "[9.0, 8.0]", "[8.0, 9.0]"
]).map(Vectors.parse)
initialModel = KMeansModel([
Vectors.parse(v) for v in ["[0.6, 0.6]", "[8.0, 8.0]"]])
model = KMeans.train(data, 2, initialModel=initialModel)
If any of these methods doesn't work it means that you're using an earlier version of Spark.
来源:https://stackoverflow.com/questions/35426240/how-to-initialize-cluster-centers-for-k-means-in-spark-mllib