简介
注意事项
开数组要开4倍大小,可以不用判断结束的边界条件。
代码
#include <cstdio> #include <iostream> #include <algorithm> #define maxn 100000 #define inf -1000000 using namespace std; //maxv数组记录每一个区间内的最大值 //sum数组记录区间和 //add数组记录这个区间需要被加的数(lazy) int a[maxn], sum[maxn << 2], add[maxn << 2]; //ln左子树节点个数 //rn右子树节点个数 void pushdown(int id, int ln, int rn){ if(add[id]){ add[id << 2] += add[id]; add[id << 2 | 1] = add[id]; sum[id << 2] += add[id] * ln; sum[id << 2 | 1] += add[id] * rn; add[id] = 0; } } //建树 void build(int id, int l, int r){ if(l == r){ sum[id] = a[l]; add[id] = 0; return; } int mid = (l + r) >> 1; build(id << 1, l, mid); build(id << 1 | 1, mid + 1, r); sum[id] = sum[id << 1] + sum[id << 1| 1]; } //点更新 把 x 变为 v void update(int id, int l, int r, int x, int v){ if(l == r){ sum[id] = v; return; } int mid = (l + r) >> 1; if(x <= mid){ update(id << 1, l, mid, x, v); } else{ update(id << 1 | 1, mid + 1, r, x, v); } sum[id] = sum[id << 1] + sum[id << 1| 1]; } //区间更新 x-_ry 所有节点 + C void update(int id, int l, int r, int x, int y, int c){ if(x <= l && y >= r){ sum[id] += c * (r - l + 1); add[id] += c; return; } int mid = (r + l) >> 1; pushdown(id, mid - l + 1, r - mid); if(x <= mid){ update(id << 1, l, mid, x, y, c); } if(y > mid){ update(id << 1 | 1, mid + 1, r, x, y, c); } sum[id] = sum[id << 1] + sum[id << 1| 1]; } //区间查询 x-y int query(int id, int l, int r, int x, int y){ if(x <= l && y >= r){ return sum[id]; } int mid = (l + r) >> 1; pushdown(id, mid - l + 1, r - mid); int ans = 0; if(x <= mid){ ans += query(id << 1, l, mid, x, y); } if(y > mid){ ans += query(id << 1 | 1, mid + 1, r, x, y); } return ans; } int main(){ int n, m; cin >> n >> m; for(int i = 1; i <= n; i++){ cin >> a[i]; } build(1, 1, n); for(int i = 0; i < m; i++){ int a, b, c, d; cin >> a >> b >> c; if(a == 1){ update(1, 1, n, b, c); } else if(a == 2){ cout<< query(1, 1, n, b, c) << endl; } else if(a == 3){ cin >> d; update(1, 1, n, b, c, d); } } return 0; }
来源:https://www.cnblogs.com/woxiaosade/p/10870346.html