Getting boolean pandas column that supports NA/ is nullable

被刻印的时光 ゝ 提交于 2019-12-18 16:45:32

问题


How can I create a pandas dataframe column with dtype bool (or int for that matter) with support for Nan/missing values?

When I try like this:

d = {'one' : np.ma.MaskedArray([True, False, True, True], mask = [0,0,1,0]),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print (df.dtypes)
print (df)

column one is implicitly converted to object. Likewise similar for ints:

d = {'one' : np.ma.MaskedArray([1,3,2,1], mask = [0,0,1,0]),
'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
df = pd.DataFrame(d)
print (df.dtypes)
print (df)

one is here implicitly converted to float64, and I'd prefer if I stayed in int domain and not handle floating point arithmetic with its idiosyncrasies (always have tolerance when comparing, rounding errors, etc.)


回答1:


In the integer case, as of pandas 0.24 (January 2019), you can use nullable integers to achieve what you want:

In [165]: df
Out[165]:
   one  two
a  1.0  1.0
b  3.0  2.0
c  NaN  3.0
d  1.0  4.0

In [166]: df.astype('Int64')
Out[166]:
   one  two
a    1    1
b    3    2
c  NaN    3
d    1    4

This works by converting the backing array to an arrays.IntegerArray, and there is no equivalent thing for booleans, but some work in that direction is discussed in this GitHub issue and this PyData talk. You could write your own extension type to cover this case as well, but if you can live with your booleans being represented by the integers 0 and 1, one approach could be the following:

In [183]: df.one
Out[183]:
a     True
b    False
c      NaN
d     True
Name: one, dtype: object

In [184]: (df.one * 1).astype('Int64')
Out[184]:
a      1
b      0
c    NaN
d      1
Name: one, dtype: Int64


来源:https://stackoverflow.com/questions/34520267/getting-boolean-pandas-column-that-supports-na-is-nullable

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!