问题
I have about 200 grayscale PNG images stored within a directory like this.
1.png
2.png
3.png
...
...
200.png
I want to import all the PNG images as NumPy arrays. How can I do this?
回答1:
Using just scipy, glob and having PIL installed (pip install pillow
) you can use scipy's imread method:
from scipy import misc
import glob
for image_path in glob.glob("/home/adam/*.png"):
image = misc.imread(image_path)
print image.shape
print image.dtype
UPDATE
According to the doc, scipy.misc.imread
is deprecated starting SciPy 1.0.0, and will be removed in 1.2.0. Consider using imageio.imread instead
. See the answer by Charles.
回答2:
Bit late to the party, but the current answer is now deprecated.
According to the doc, scipy.misc.imread
is deprecated starting SciPy 1.0.0, and will be removed in 1.2.0. Consider using imageio.imread instead.
Example:
import imageio
im = imageio.imread('my_image.png')
print(im.shape)
You can also use imageio to load from fancy sources:
im = imageio.imread('http://upload.wikimedia.org/wikipedia/commons/d/de/Wikipedia_Logo_1.0.png')
Edit:
To load all of the *.png
files in a specific folder, you could use the glob
package:
import imageio
import glob
for im_path in glob.glob("path/to/folder/*.png"):
im = imageio.imread(im_path)
print(im.shape)
# do whatever with the image here
回答3:
This can also be done with the Image
class of the PIL library:
from PIL import Image
import numpy as np
im_frame = Image.open(path_to_file + 'file.png')
np_frame = np.array(im_frame.getdata())
回答4:
If you are loading images, you are likely going to be working with one or both of matplotlib
and opencv
to manipulate and view the images.
For this reason, I tend to use their image readers and append those to lists, from which I make a NumPy array.
import os
import matplotlib.pyplot as plt
import cv2
import numpy as np
# Get the file paths
im_files = os.listdir('path/to/files/')
# imagine we only want to load PNG files (or JPEG or whatever...)
EXTENSION = '.png'
# Load using matplotlib
images_plt = [plt.imread(f) for f in im_files if f.endswith(EXTENSION)]
# convert your lists into a numpy array of size (N, H, W, C)
images = np.array(images_plt)
# Load using opencv
images_cv = [cv2.imread(f) for f in im_files if f.endswith(EXTENSION)]
# convert your lists into a numpy array of size (N, C, H, W)
images = np.array(images_cv)
The only difference to be aware of is the following:
- opencv loads channels first
- matplotlib loads channels last.
So a single image that is 256*256 in size would produce matrices of size (3, 256, 256) with opencv and (256, 256, 3) using matplotlib.
回答5:
I changed a bit and it worked like this, dumped into one single array, provided all the images are of same dimensions.
png = []
for image_path in glob.glob("./train/*.png"):
png.append(misc.imread(image_path))
im = np.asarray(png)
print 'Importing done...', im.shape
回答6:
Using a (very) commonly used package is prefered:
import matplotlib.pyplot as plt
im = plt.imread('image.png')
来源:https://stackoverflow.com/questions/31386096/importing-png-files-into-numpy