问题
I'm looking for the best way to partition a list (or seq) so that groups have a given size. for ex. let's say I want to group with size 2 (this could be any other number though):
let xs = [(a,b,c); (a,b,d); (y,z,y); (w,y,z); (n,y,z)]
let grouped = partitionBySize 2 input
// => [[(a,b,c);(a,b,d)]; [(y,z,y);(w,y,z)]; [(n,y,z)]]
The obvious way to implement partitionBySize would be by adding the position to every tuple in the input list so that it becomes
[(0,a,b,c), (1,a,b,d), (2,y,z,y), (3,w,y,z), (4,n,y,z)]
and then use GroupBy with
xs |> Seq.ofList |> Seq.GroupBy (function | (i,_,_,_) -> i - (i % n))
However this solution doesn't look very elegant to me. Is there a better way to implement this function (maybe with a built-in function)?
回答1:
Here's a tail-recursive function that traverses the list once.
let chunksOf n items =
let rec loop i acc items =
seq {
match i, items, acc with
//exit if chunk size is zero or input list is empty
| _, [], [] | 0, _, [] -> ()
//counter=0 so yield group and continue looping
| 0, _, _::_ -> yield List.rev acc; yield! loop n [] items
//decrement counter, add head to group, and loop through tail
| _, h::t, _ -> yield! loop (i-1) (h::acc) t
//reached the end of input list, yield accumulated elements
//handles items.Length % n <> 0
| _, [], _ -> yield List.rev acc
}
loop n [] items
Usage
[1; 2; 3; 4; 5]
|> chunksOf 2
|> Seq.toList //[[1; 2]; [3; 4]; [5]]
I like the elegance of Tomas' approach, but I benchmarked both our functions using an input list of 10 million elements. This one clocked in at 9 secs vs 22 for his. Of course, as he admitted, the most efficient method would probably involve arrays/loops.
回答2:
This seems to be a repeating pattern that's not captured by any function in the F# core library. When solving similar problems earlier, I defined a function Seq.groupWhen
(see F# snippets) that turns a sequence into groups. A new group is started when the predicate holds.
You could solve the problem using Seq.groupWhen
similarly to Seq.group
(by starting a new group at even index). Unlike with Seq.group
, this is efficient, because Seq.groupWhen
iterates over the input sequence just once:
[3;3;2;4;1;2;8]
|> Seq.mapi (fun i v -> i, v) // Add indices to the values (as first tuple element)
|> Seq.groupWhen (fun (i, v) -> i%2 = 0) // Start new group after every 2nd element
|> Seq.map (Seq.map snd) // Remove indices from the values
Implementing the function directly using recursion is probably easier - the solution from John does exactly what you need - but if you wanted to see a more general approach then Seq.groupWhen
may be interesting.
回答3:
List.chunkBySize (hat tip: Scott Wlaschin) is now available and does exactly what you're talking about. It appears to be new with F# 4.0.
let grouped = [1..10] |> List.chunkBySize 3
// val grouped : int list list =
// [[1; 2; 3]; [4; 5; 6]; [7; 8; 9]; [10]]
Seq.chunkBySize
and Array.chunkBySize
are also now available.
回答4:
What about a recursive approach? - only requires a single pass
let rec partitionBySize length inp dummy =
match inp with
|h::t ->
if dummy |> List.length < length then
partitionBySize length t (h::dummy)
else dummy::(partitionBySize length t (h::[]))
|[] -> dummy::[]
Then invoke it with partitionBySize 2 xs []
回答5:
let partitionBySize size xs =
let sq = ref (seq xs)
seq {
while (Seq.length !sq >= size) do
yield Seq.take size !sq
sq := Seq.skip size !sq
if not (Seq.isEmpty !sq) then yield !sq
}
// result to list, if you want
|> Seq.map (Seq.toList)
|> Seq.toList
UPDATE
let partitionBySize size (sq:seq<_>) =
seq {
let e = sq.GetEnumerator()
let empty = ref true;
while !empty do
yield seq { for i = 1 to size do
empty := e.MoveNext()
if !empty then yield e.Current
}
}
array slice version:
let partitionBySize size xs =
let xa = Array.ofList xs
let len = xa.Length
[
for i in 0..size..(len-1) do
yield ( if i + size >= len then xa.[i..] else xa.[i..(i+size-1)] ) |> Array.toList
]
回答6:
Well, I was late for the party. The code below is a tail-recursive version using high-order functions on List
:
let partitionBySize size xs =
let i = size - (List.length xs - 1) % size
let xss, _, _ =
List.foldBack( fun x (acc, ls, j) ->
if j = size then ((x::ls)::acc, [], 1)
else (acc, x::ls, j+1)
) xs ([], [], i)
xss
I did the same benchmark as Daniel did. This function is efficient while it is 2x faster than his approach on my machine. I also compared it with an array/loop version, they are comparable in terms of performance.
Moreover, unlike John's answer, this version preserves order of elements in inner lists.
来源:https://stackoverflow.com/questions/8064016/how-to-partition-a-list-with-a-given-group-size