Pandas Correlation Groupby

只谈情不闲聊 提交于 2019-12-17 22:36:49

问题


Assuming I have a dataframe similar to the below, how would I get the correlation between 2 specific columns and then group by the 'ID' column? I believe the Pandas 'corr' method finds the correlation between all columns. If possible I would also like to know how I could find the 'groupby' correlation using the .agg function (i.e. np.correlate).

What I have:

ID  Val1    Val2    OtherData   OtherData
A   5       4       x           x
A   4       5       x           x
A   6       6       x           x
B   4       1       x           x
B   8       2       x           x
B   7       9       x           x
C   4       8       x           x
C   5       5       x           x
C   2       1       x           x

What I need:

ID  Correlation_Val1_Val2
A   0.12
B   0.22
C   0.05

Thanks!


回答1:


You pretty much figured out all the pieces, just need to combine them:

>>> df.groupby('ID')[['Val1','Val2']].corr()

             Val1      Val2
ID                         
A  Val1  1.000000  0.500000
   Val2  0.500000  1.000000
B  Val1  1.000000  0.385727
   Val2  0.385727  1.000000

In your case, printing out a 2x2 for each ID is excessively verbose. I don't see an option to print a scalar correlation instead of the whole matrix, but you can do something simple like this if you only have two variables:

>>> df.groupby('ID')[['Val1','Val2']].corr().iloc[0::2,-1]

ID       
A   Val1    0.500000
B   Val1    0.385727

For the more general case of 3+ variables

For 3 or more variables, it is not straightforward to create concise output but you could do something like this:

groups = list('Val1', 'Val2', 'Val3', 'Val4')
df2 = pd.DataFrame()
for i in range( len(groups)-1): 
    df2 = df2.append( df.groupby('ID')[groups].corr().stack()
                        .loc[:,groups[i],groups[i+1]:].reset_index() )

df2.columns = ['ID', 'v1', 'v2', 'corr']
df2.set_index(['ID','v1','v2']).sort_index()

Note that if we didn't have the groupby element, it would be straightforward to use an upper or lower triangle function from numpy. But since that element is present, it is not so easy to produce concise output in a more elegant manner as far as I can tell.




回答2:


In the above answer; since ix has been depreciated use iloc instead with some minor other changes:

df.groupby('ID')[['Val1','Val2']].corr().iloc[0::2][['Val2']] # to get pandas DataFrame

or

df.groupby('ID')[['Val1','Val2']].corr().iloc[0::2]['Val2'] # to get pandas Series



回答3:


One more simple solution:

df.groupby('ID')[['Val1','Val2']].corr().unstack().iloc[:,1]


来源:https://stackoverflow.com/questions/28988627/pandas-correlation-groupby

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!