问题
I have a Python3.x pandas DataFrame whereby certain columns are strings which as expressed as bytes (like in Python2.x)
import pandas as pd
df = pd.DataFrame(...)
df
COLUMN1 ....
0 b'abcde' ....
1 b'dog' ....
2 b'cat1' ....
3 b'bird1' ....
4 b'elephant1' ....
When I access by column with df.COLUMN1
, I see Name: COLUMN1, dtype: object
However, if I access by element, it is a "bytes" object
df.COLUMN1.ix[0].dtype
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'bytes' object has no attribute 'dtype'
How do I convert these into "regular" strings? That is, how can I get rid of this b''
prefix?
回答1:
You can use vectorised str.decode to decode byte strings into ordinary strings:
df['COLUMN1'].str.decode("utf-8")
To do this for multiple columns you can select just the str columns:
str_df = df.select_dtypes([np.object])
convert all of them:
str_df = str_df.stack().str.decode('utf-8').unstack()
You can then swap out converted cols with the original df cols:
for col in str_df:
df[col] = str_df[col]
回答2:
df['COLUMN1'].apply(lambda x: x.decode("utf-8"))
回答3:
df.columns = [x.decode("utf-8") for x in df.columns]
This will make it faster and easier.
来源:https://stackoverflow.com/questions/40389764/how-to-translate-bytes-objects-into-literal-strings-in-pandas-dataframe-pytho