问题
I have a DataFrame
with the schema
root
|-- label: string (nullable = true)
|-- features: struct (nullable = true)
| |-- feat1: string (nullable = true)
| |-- feat2: string (nullable = true)
| |-- feat3: string (nullable = true)
While, I am able to filter the data frame using
val data = rawData
.filter( !(rawData("features.feat1") <=> "100") )
I am unable to drop the columns using
val data = rawData
.drop("features.feat1")
Is it something that I am doing wrong here? I also tried (unsuccessfully) doing drop(rawData("features.feat1"))
, though it does not make much sense to do so.
Thanks in advance,
Nikhil
回答1:
It is just a programming exercise but you can try something like this:
import org.apache.spark.sql.{DataFrame, Column}
import org.apache.spark.sql.types.{StructType, StructField}
import org.apache.spark.sql.{functions => f}
import scala.util.Try
case class DFWithDropFrom(df: DataFrame) {
def getSourceField(source: String): Try[StructField] = {
Try(df.schema.fields.filter(_.name == source).head)
}
def getType(sourceField: StructField): Try[StructType] = {
Try(sourceField.dataType.asInstanceOf[StructType])
}
def genOutputCol(names: Array[String], source: String): Column = {
f.struct(names.map(x => f.col(source).getItem(x).alias(x)): _*)
}
def dropFrom(source: String, toDrop: Array[String]): DataFrame = {
getSourceField(source)
.flatMap(getType)
.map(_.fieldNames.diff(toDrop))
.map(genOutputCol(_, source))
.map(df.withColumn(source, _))
.getOrElse(df)
}
}
Example usage:
scala> case class features(feat1: String, feat2: String, feat3: String)
defined class features
scala> case class record(label: String, features: features)
defined class record
scala> val df = sc.parallelize(Seq(record("a_label", features("f1", "f2", "f3")))).toDF
df: org.apache.spark.sql.DataFrame = [label: string, features: struct<feat1:string,feat2:string,feat3:string>]
scala> DFWithDropFrom(df).dropFrom("features", Array("feat1")).show
+-------+--------+
| label|features|
+-------+--------+
|a_label| [f2,f3]|
+-------+--------+
scala> DFWithDropFrom(df).dropFrom("foobar", Array("feat1")).show
+-------+----------+
| label| features|
+-------+----------+
|a_label|[f1,f2,f3]|
+-------+----------+
scala> DFWithDropFrom(df).dropFrom("features", Array("foobar")).show
+-------+----------+
| label| features|
+-------+----------+
|a_label|[f1,f2,f3]|
+-------+----------+
Add an implicit conversion and you're good to go.
回答2:
This version allows you to remove nested columns at any level:
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.{StructType, DataType}
/**
* Various Spark utilities and extensions of DataFrame
*/
object DataFrameUtils {
private def dropSubColumn(col: Column, colType: DataType, fullColName: String, dropColName: String): Option[Column] = {
if (fullColName.equals(dropColName)) {
None
} else {
colType match {
case colType: StructType =>
if (dropColName.startsWith(s"${fullColName}.")) {
Some(struct(
colType.fields
.flatMap(f =>
dropSubColumn(col.getField(f.name), f.dataType, s"${fullColName}.${f.name}", dropColName) match {
case Some(x) => Some(x.alias(f.name))
case None => None
})
: _*))
} else {
Some(col)
}
case other => Some(col)
}
}
}
protected def dropColumn(df: DataFrame, colName: String): DataFrame = {
df.schema.fields
.flatMap(f => {
if (colName.startsWith(s"${f.name}.")) {
dropSubColumn(col(f.name), f.dataType, f.name, colName) match {
case Some(x) => Some((f.name, x))
case None => None
}
} else {
None
}
})
.foldLeft(df.drop(colName)) {
case (df, (colName, column)) => df.withColumn(colName, column)
}
}
/**
* Extended version of DataFrame that allows to operate on nested fields
*/
implicit class ExtendedDataFrame(df: DataFrame) extends Serializable {
/**
* Drops nested field from DataFrame
*
* @param colName Dot-separated nested field name
*/
def dropNestedColumn(colName: String): DataFrame = {
DataFrameUtils.dropColumn(df, colName)
}
}
}
Usage:
import DataFrameUtils._
df.dropNestedColumn("a.b.c.d")
回答3:
Expanding on spektom answer. With support for array types:
object DataFrameUtils {
private def dropSubColumn(col: Column, colType: DataType, fullColName: String, dropColName: String): Option[Column] = {
if (fullColName.equals(dropColName)) {
None
} else if (dropColName.startsWith(s"$fullColName.")) {
colType match {
case colType: StructType =>
Some(struct(
colType.fields
.flatMap(f =>
dropSubColumn(col.getField(f.name), f.dataType, s"$fullColName.${f.name}", dropColName) match {
case Some(x) => Some(x.alias(f.name))
case None => None
})
: _*))
case colType: ArrayType =>
colType.elementType match {
case innerType: StructType =>
Some(struct(innerType.fields
.flatMap(f =>
dropSubColumn(col.getField(f.name), f.dataType, s"$fullColName.${f.name}", dropColName) match {
case Some(x) => Some(x.alias(f.name))
case None => None
})
: _*))
}
case other => Some(col)
}
} else {
Some(col)
}
}
protected def dropColumn(df: DataFrame, colName: String): DataFrame = {
df.schema.fields
.flatMap(f => {
if (colName.startsWith(s"${f.name}.")) {
dropSubColumn(col(f.name), f.dataType, f.name, colName) match {
case Some(x) => Some((f.name, x))
case None => None
}
} else {
None
}
})
.foldLeft(df.drop(colName)) {
case (df, (colName, column)) => df.withColumn(colName, column)
}
}
/**
* Extended version of DataFrame that allows to operate on nested fields
*/
implicit class ExtendedDataFrame(df: DataFrame) extends Serializable {
/**
* Drops nested field from DataFrame
*
* @param colName Dot-separated nested field name
*/
def dropNestedColumn(colName: String): DataFrame = {
DataFrameUtils.dropColumn(df, colName)
}
}
}
回答4:
Following spektom's code snippet for scala, I've created a similar code in Java. Since java 8 doesn't have foldLeft, I used forEachOrdered. This code is suitable for spark 2.x (I'm using 2.1) Also I noted that dropping a column and adding it using withColumn with the same name doesn't work, so I'm just replacing the column, and it seem to work.
Code is not fully tested, hope it works :-)
public class DataFrameUtils {
public static Dataset<Row> dropNestedColumn(Dataset<Row> dataFrame, String columnName) {
final DataFrameFolder dataFrameFolder = new DataFrameFolder(dataFrame);
Arrays.stream(dataFrame.schema().fields())
.flatMap( f -> {
if (columnName.startsWith(f.name() + ".")) {
final Optional<Column> column = dropSubColumn(col(f.name()), f.dataType(), f.name(), columnName);
if (column.isPresent()) {
return Stream.of(new Tuple2<>(f.name(), column));
} else {
return Stream.empty();
}
} else {
return Stream.empty();
}
}).forEachOrdered(colTuple -> dataFrameFolder.accept(colTuple));
return dataFrameFolder.getDF();
}
private static Optional<Column> dropSubColumn(Column col, DataType colType, String fullColumnName, String dropColumnName) {
Optional<Column> column = Optional.empty();
if (!fullColumnName.equals(dropColumnName)) {
if (colType instanceof StructType) {
if (dropColumnName.startsWith(fullColumnName + ".")) {
column = Optional.of(struct(getColumns(col, (StructType)colType, fullColumnName, dropColumnName)));
}
} else {
column = Optional.of(col);
}
}
return column;
}
private static Column[] getColumns(Column col, StructType colType, String fullColumnName, String dropColumnName) {
return Arrays.stream(colType.fields())
.flatMap(f -> {
final Optional<Column> column = dropSubColumn(col.getField(f.name()), f.dataType(),
fullColumnName + "." + f.name(), dropColumnName);
if (column.isPresent()) {
return Stream.of(column.get().alias(f.name()));
} else {
return Stream.empty();
}
}
).toArray(Column[]::new);
}
private static class DataFrameFolder implements Consumer<Tuple2<String, Optional<Column>>> {
private Dataset<Row> df;
public DataFrameFolder(Dataset<Row> df) {
this.df = df;
}
public Dataset<Row> getDF() {
return df;
}
@Override
public void accept(Tuple2<String, Optional<Column>> colTuple) {
if (!colTuple._2().isPresent()) {
df = df.drop(colTuple._1());
} else {
df = df.withColumn(colTuple._1(), colTuple._2().get());
}
}
}
Usage example:
private class Pojo {
private String str;
private Integer number;
private List<String> strList;
private Pojo2 pojo2;
public String getStr() {
return str;
}
public Integer getNumber() {
return number;
}
public List<String> getStrList() {
return strList;
}
public Pojo2 getPojo2() {
return pojo2;
}
}
private class Pojo2 {
private String str;
private Integer number;
private List<String> strList;
public String getStr() {
return str;
}
public Integer getNumber() {
return number;
}
public List<String> getStrList() {
return strList;
}
}
SQLContext context = new SQLContext(new SparkContext("local[1]", "test"));
Dataset<Row> df = context.createDataFrame(Collections.emptyList(), Pojo.class);
Dataset<Row> dfRes = DataFrameUtils.dropNestedColumn(df, "pojo2.str");
Original struct:
root
|-- number: integer (nullable = true)
|-- pojo2: struct (nullable = true)
| |-- number: integer (nullable = true)
| |-- str: string (nullable = true)
| |-- strList: array (nullable = true)
| | |-- element: string (containsNull = true)
|-- str: string (nullable = true)
|-- strList: array (nullable = true)
| |-- element: string (containsNull = true)
After drop:
root
|-- number: integer (nullable = true)
|-- pojo2: struct (nullable = false)
| |-- number: integer (nullable = true)
| |-- strList: array (nullable = true)
| | |-- element: string (containsNull = true)
|-- str: string (nullable = true)
|-- strList: array (nullable = true)
| |-- element: string (containsNull = true)
来源:https://stackoverflow.com/questions/32727279/dropping-a-nested-column-from-spark-dataframe