循环网络的前向传播过程
import numpy as np
X = [1,2]
state = [0.0,0.0]
# 分开定义不同输入部分的权重以方便操作
w_cell_state = np.asarray([[0.1,0.2],[0.3,0.4]])
w_cell_input = np.asarray([0.5,0.6])
b_cell = np.asarray([0.1,-0.1])
#定义用于输出的全连接层参数
w_output = np.asarray([1.0,2.0])
b_output = 0.1
#按照时间顺序执行循环神经网络的前向传播过程
for i in range(len(X)):
#计算循环体中的全连接层神经网络
before_activation = np.dot(state,w_cell_state) + X[i] * w_cell_input + b_cell
state = np.tanh(before_activation)
#根据当前时刻状态计算最终输出
final_output = np.dot(state,w_output) + b_output
print "before activate: ",before_activation
print "state: ",state
print "output: ",final_output
print "\n"
before activate: [0.6 0.5]
state: [0.53704957 0.46211716]
output: 1.561283881518055
before activate: [1.2923401 1.39225678]
state: [0.85973818 0.88366641]
output: 2.727071008233731
来源:CSDN
作者:Mikowoo007
链接:https://blog.csdn.net/Mikowoo007/article/details/103569690