卷积操作可视化

孤人 提交于 2019-12-14 09:00:49
图片来自这里

基础卷积模块

  • standard convolution
图片来自这里

标准卷积的计算量为HWNK²M,可以分为3部分

(1) the spatial size of the input feature map HxW,

(2) the size of convolution kernel K²

 (3) the numbers of input and output channels NxM.

  • group convolution
图片来自这里
  • Depthwise Convolution

图片来自这里
  • Pointwise Convolution
图片来自这里
  • Depthwise separable convolution
图片来自这里
  • channel Shuffle
图片来自这里,(a) Two Stacked Group Convolutions (GConv1 & GConv2), (b) Shuffle the channels before convolution, (c) Equivalent implementation of (b)

卷积操作变体

  • Resnet
图片来自这里

Residual blocks — Building blocks of ResNet文章较详细的介绍了skip connection及残差网络名称的由来。

Let us consider a neural network block, whose input is x and we would like to learn the true distribution H(x). Let us denote the difference (or the residual) between this as

R(x) = Output — Input = H(x) — x

Rearranging it, we get,

H(x) = R(x) + x

Our residual block is overall trying to learn the true output, H(x) and if you look closely at the image above, you will realize that since we have an identity connection coming due to x, the layers are actually trying to learn the residual, R(x). So to summarize, the layers in a traditional network are learning the true output (H(x))whereas the layers in a residual network are learning the residual (R(x)). Hence, the name: Residual Block
  • ResNeXt

图片来自这里

该网络结构与inception及group convolution的视图如下。

图片来自这里,(a)resnext (b)inception (c)group conv
  • Squeeze-and-Excitation (SE) Block

图片来自这里

参考文献:

  1. Why MobileNet and Its Variants (e.g. ShuffleNet) Are Fast

  2. Review: IGCNet / IGCV1 — Interleaved Group Convolutions (Image Classification)

  3. A Basic Introduction to Separable Convolutions

  4. 深度學習-MobileNet (Depthwise separable convolution)

  5. Review: ShuffleNet V1 — Light Weight Model (Image Classification)

  6. Residual blocks — Building blocks of ResNet

  7. An Overview of ResNet and its Variants

  8. Review: SENet — Squeeze-and-Excitation Network, Winner of ILSVRC 2017 (Image Classification)

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!