问题
Suppose I have the following DataFrame:
df = pd.DataFrame({'Event': ['A', 'B', 'A', 'A', 'B', 'C', 'B', 'B', 'A', 'C'],
'Date': ['2019-01-01', '2019-02-01', '2019-03-01', '2019-03-01', '2019-02-15',
'2019-03-15', '2019-04-05', '2019-04-05', '2019-04-15', '2019-06-10'],
'Sale': [100, 200, 150, 200, 150, 100, 300, 250, 500, 400]})
df['Date'] = pd.to_datetime(df['Date'])
df
Event Date Sale
A 2019-01-01 100
B 2019-02-01 200
A 2019-03-01 150
A 2019-03-01 200
B 2019-02-15 150
C 2019-03-15 100
B 2019-04-05 300
B 2019-04-05 250
A 2019-04-15 500
C 2019-06-10 400
I would like to obtain the following result:
Event Date Sale Total_Previous_Sale
A 2019-01-01 100 0
B 2019-02-01 200 0
A 2019-03-01 150 100
A 2019-03-01 200 100
B 2019-02-15 150 200
C 2019-03-15 100 0
B 2019-04-05 300 350
B 2019-04-05 250 350
A 2019-04-15 500 450
C 2019-06-10 400 100
where df['Total_Previous_Sale']
is the total amount of sale (df['Sale']
) when the event (df['Event']
) takes place before its adjacent date (df['Date']
). For instance,
- The total amount of sale of event A takes place before 2019-01-01 is 0,
- The total amount of sale of event A takes place before 2019-03-01 is 100, and
- The total amount of sale of event A takes place before 2019-04-15 is 100 + 150 + 200 = 450.
Basically, it is almost the same like conditional cumulative sum but only for all previous values (excluding current value[s]). I am able to obtain the desired result using this line:
df['Sale_Total'] = [df.loc[(df['Event'] == df.loc[i, 'Event']) & (df['Date'] < df.loc[i, 'Date']),
'Sale'].sum() for i in range(len(df))]
Although, it is slow but it works fine. I believe there is a better and faster way to do that. I have tried these lines:
df['Total_Previuos_Sale'] = df[df['Date'] < df['Date']].groupby(['Event'])['Sale'].cumsum()
or
df['Total_Previuos_Sale'] = df.groupby(['Event'])['Sale'].shift(1).cumsum().fillna(0)
but it produces NaNs or comes up with an unwanted result.
回答1:
First aggregate sum
per Event
and Date
for MultiIndex
, then grouping by first level Event
and use shift
with cumulative sum with lambda function and last join
together:
s = (df.groupby(['Event', 'Date'])['Sale']
.sum().groupby(level=0)
.apply(lambda x: x.shift(1).cumsum())
.fillna(0)
df = df.join(s.rename('Total_Previuos_Sale'), on=['Event','Date'])
print (df)
Event Date Sale Total_Previuos_Sale
0 A 2019-01-01 100 0.0
1 B 2019-02-01 200 0.0
2 A 2019-03-01 150 100.0
3 A 2019-03-01 200 100.0
4 B 2019-02-15 150 200.0
5 C 2019-03-15 100 0.0
6 B 2019-04-05 300 350.0
7 B 2019-04-05 250 350.0
8 A 2019-04-15 500 450.0
9 C 2019-06-10 400 100.0
回答2:
Finally, I can find a better and faster way to get the desired result. It turns out that it is very easy. One can try:
df['Total_Previous_Sale'] = df.groupby('Event')['Sale'].cumsum() \
- df.groupby(['Event', 'Date'])['Sale'].cumsum()
来源:https://stackoverflow.com/questions/58074962/conditional-running-sum-in-pandas-for-all-previous-values-only