问题
I came across this question in recent interview :
Given an array A
of length N
, we are supposed to answer Q
queries. Query form is as follows :
Given x
and k
, we need to make another array B
of same length such that B[i] = A[i] ^ x
where ^
is XOR operator. Sort an array B
in descending order and return B[k]
.
Input format : First line contains interger N Second line contains N integers denoting array A Third line contains Q i.e. number of queries Next Q lines contains space-separated integers x and k
Output format : Print respective B[k] value each on new line for Q queries.
e.g. for input :
5
1 2 3 4 5
2
2 3
0 1
output will be :
3
5
For first query,
A = [1, 2, 3, 4, 5]
For query x = 2
and k = 3
, B = [1^2, 2^2, 3^2, 4^2, 5^2] = [3, 0, 1, 6, 7]
. Sorting in descending order B = [7, 6, 3, 1, 0]
. So, B[3] = 3
.
For second query,
A
and B
will be same as x = 0
. So, B[1] = 5
I have no idea how to solve such problems. Thanks in advance.
回答1:
This is solvable in O(N + Q). For simplicity I assume you are dealing with positive or unsigned values only, but you can probably adjust this algorithm also for negative numbers.
First you build a binary tree. The left edge stands for a bit that is 0, the right edge for a bit that is 1. In each node you store how many numbers are in this bucket. This can be done in O(N), because the number of bits is constant.
Because this is a little bit hard to explain, I'm going to show how the tree looks like for 3-bit numbers [0, 1, 4, 5, 7] i.e. [000, 001, 100, 101, 111]
*
/ \
2 3 2 numbers have first bit 0 and 3 numbers first bit 1
/ \ / \
2 0 2 1 of the 2 numbers with first bit 0, have 2 numbers 2nd bit 0, ...
/ \ / \ / \
1 1 1 1 0 1 of the 2 numbers with 1st and 2nd bit 0, has 1 number 3rd bit 0, ...
To answer a single query you go down the tree by using the bits of x. At each node you have 4 possibilities, looking at bit b of x and building answer a, which is initially 0:
b = 0 and k < the value stored in the left child of the current node (the 0-bit branch): current node becomes left child, a = 2 * a (shifting left by 1)
b = 0 and k >= the value stored in the left child: current node becomes right child, k = k - value of left child, a = 2 * a + 1
b = 1 and k < the value stored in the right child (the 1-bit branch, because of the xor operation everything is flipped): current node becomes right child, a = 2 * a
b = 1 and k >= the value stored in the right child: current node becomes left child, k = k - value of right child, a = 2 * a + 1
This is O(1), again because the number of bits is constant. Therefore the overall complexity is O(N + Q).
Example: [0, 1, 4, 5, 7] i.e. [000, 001, 100, 101, 111], k = 3, x = 3 i.e. 011
First bit is 0 and k >= 2, therefore we go right, k = k - 2 = 3 - 2 = 1 and a = 2 * a + 1 = 2 * 0 + 1 = 1.
Second bit is 1 and k >= 1, therefore we go left (inverted because the bit is 1), k = k - 1 = 0, a = 2 * a + 1 = 3
Third bit is 1 and k < 1, so the solution is a = 2 * a + 0 = 6
Control: [000, 001, 100, 101, 111] xor 011 = [011, 010, 111, 110, 100] i.e. [3, 2, 7, 6, 4] and in order [2, 3, 4, 6, 7], so indeed the number at index 3 is 6 and the solution (always talking about 0-based indexing here).
来源:https://stackoverflow.com/questions/58487698/kth-element-in-transformed-array