Running two mapper and two reducer for simple hadoop mapreduce jobs

跟風遠走 提交于 2019-12-14 03:46:28

问题


I just wanted to have a better understanding on using multiple mappers and reducers.I want to try this out using a simple hadoop mapreduce Word count job.I want to run two mapper and two reducer for this wordcount job.Is there that I need to configure manually on the configuration files or is it just enough to just make changes on the WordCount.java file.

I'm running this job on a Single node.And I'm running this job as

$ hadoop jar job.jar input output

And i've started

$ hadoop namenode -format
$ hadoop namenode

$ hadoop datanode

sbin$ ./yarn-daemon.sh start resourcemanager sbin$ ./yarn-daemon.sh start resourcemanager

I'm running hadoop-2.0.0-cdh4.0.0

And my WordCount.java file is

package org.apache.hadoop.examples;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.rg.apache.hadoop.fs.Path;
import oapache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class WordCount {
private static final Log LOG = LogFactory.getLog(WordCount.class);

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      //printKeyAndValues(key, values);

      for (IntWritable val : values) {
        sum += val.get();
      LOG.info("val = " + val.get());
      }
      LOG.info("sum = " + sum + " key = " + key);
      result.set(sum);
      context.write(key, result);
      //System.err.println(String.format("[reduce] word: (%s), count: (%d)", key, result.get()));
    }


  // a little method to print debug output
    private void printKeyAndValues(Text key, Iterable<IntWritable> values)
    {
      StringBuilder sb = new StringBuilder();
      for (IntWritable val : values)
      {
        sb.append(val.get() + ", ");
      }
      System.err.println(String.format("[reduce] key: (%s), value: (%s)", key, sb.toString()));
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length != 2) {
      System.err.println("Usage: wordcount <in> <out>");
      System.exit(2);
    }
    Job job = new Job(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));

    System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

Could anyone of you help me now to run two mapper and the reducers for this Word count job?


回答1:


Gladnick: In case you are planning to use the default TextInputFormat, there would be atleast as many mappers at the number of input files (or more depending on the file size). So just put 2 files into your input directories so that you can get 2 mappers running. (Advising this solution, because you plan to run this as a test case).

Now that you have asked for 2 reducers, all you need to do is job.setNumReduceTasks(2) in your main befor submiting the job.

After that just prepare a jar of your application and run that in hadoop pseudo cluster.

In case you need to specify which word to go to which reducer, you can specify that in the Partitioner class.

            Configuration configuration = new Configuration();
        // create a configuration object that provides access to various
        // configuration parameters
        Job job = new Job(configuration, "Wordcount-Vowels & Consonants");
        // create the job object and set job name as Wordcount-Vowels &
        // Consonants
        job.setJarByClass(WordCount.class);
        // set the main class
        job.setNumReduceTasks(2);
        // set the number of reduce tasks required
        job.setMapperClass(WordCountMapper.class);
        // set the map class for the job
        job.setCombinerClass(WordCountCombiner.class);
        // set the combiner class for the job
        job.setPartitionerClass(VowelConsonantPartitioner.class);
        // set the partitioner class for the job
        job.setReducerClass(WordCountReducer.class);
        // set the reduce class for the job
        job.setOutputKeyClass(Text.class);
        // set the output type of key (the word) expected from the job, Text
        // analogous to String
        job.setOutputValueClass(IntWritable.class);
        // set the output type of value (the count) expected from the job,
        // IntWritable analogous to int
        FileInputFormat.addInputPath(job, new Path(args[0]));
        // set the input directory for fetching the input files
        FileOutputFormat.setOutputPath(job, new Path(args[1])); 

This should be the structure of your main program. You may include the combiner and the partitioner in case needed.




回答2:


For mappers set

mapred.max.split.size 

to half the size of your file.

For reducers set them to 2 explicitly as

 mapred.reduce.tasks=2


来源:https://stackoverflow.com/questions/11717495/running-two-mapper-and-two-reducer-for-simple-hadoop-mapreduce-jobs

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!