PySpark - Adding a Column from a list of values using a UDF

99封情书 提交于 2019-12-13 14:51:20

问题


I have to add column to a PySpark dataframe based on a list of values.

a= spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])

I have a list called rating, which is a rating of each pet.

rating = [5,4,1]

I need to append the dataframe with a column called Rating, such that

+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
|   Dog|  Cat|     5|
|   Cat|  Dog|     4|
| Mouse|  Cat|     1|
+------+-----+------+

I have done the following however it is returning only the first value in the list in the Rating Column

def add_labels():
    return rating.pop(0)

labels_udf = udf(add_labels, IntegerType())

new_df = a.withColumn('Rating', labels_udf()).cache()

out:

+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
|   Dog|  Cat|     5|
|   Cat|  Dog|     5|
| Mouse|  Cat|     5|
+------+-----+------+

回答1:


Hope this helps!

from pyspark.sql.functions import monotonically_increasing_id

#sample data
a= sqlContext.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],
                               ["Animal", "Enemy"])
a.show()

#convert list to a dataframe
rating = [5,4,1]
b = sqlContext.createDataFrame([(l,) for l in rating], ['Rating'])

#join both dataframe to get the final result
a = a.withColumn("row_idx", monotonically_increasing_id())
b = b.withColumn("row_idx", monotonically_increasing_id())
final_df = a.join(b, a.row_idx == b.row_idx).\
             drop("row_idx")
final_df.show()

Input:

+------+-----+
|Animal|Enemy|
+------+-----+
|   Dog|  Cat|
|   Cat|  Dog|
| Mouse|  Cat|
+------+-----+

Output is:

+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
|   Cat|  Dog|     4|
|   Dog|  Cat|     5|
| Mouse|  Cat|     1|
+------+-----+------+



回答2:


As mentioned by @Tw UxTLi51Nus, if you can order the DataFrame, let's say, by Animal, without this changing your results, you can then do the following:

def add_labels(indx):
    return rating[indx-1] # since row num begins from 1
labels_udf = udf(add_labels, IntegerType())

a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])
a.createOrReplaceTempView('a')
a = spark.sql('select row_number() over (order by "Animal") as num, * from a')

a.show()


+---+------+-----+
|num|Animal|Enemy|
+---+------+-----+
|  1|   Dog|  Cat|
|  2|   Cat|  Dog|
|  3| Mouse|  Cat|
+---+------+-----+

new_df = a.withColumn('Rating', labels_udf('num'))
new_df.show()
+---+------+-----+------+
|num|Animal|Enemy|Rating|
+---+------+-----+------+
|  1|   Dog|  Cat|     5|
|  2|   Cat|  Dog|     4|
|  3| Mouse|  Cat|     1|
+---+------+-----+------+

And then drop the num column:

new_df.drop('num').show()
+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
|   Dog|  Cat|     5|
|   Cat|  Dog|     4|
| Mouse|  Cat|     1|
+------+-----+------+

Edit:

Another - but perhaps ugly and a bit inefficient - way, if you cannot sort by a column, is to go back to rdd and do the following:

a = spark.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],["Animal", "Enemy"])

# or create the rdd from the start:
# a = spark.sparkContext.parallelize([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")])

a = a.rdd.zipWithIndex()
a = a.toDF()
a.show()

+-----------+---+
|         _1| _2|
+-----------+---+
|  [Dog,Cat]|  0|
|  [Cat,Dog]|  1|
|[Mouse,Cat]|  2|
+-----------+---+

a = a.select(bb._1.getItem('Animal').alias('Animal'), bb._1.getItem('Enemy').alias('Enemy'), bb._2.alias('num'))

def add_labels(indx):
    return rating[indx] # indx here will start from zero

labels_udf = udf(add_labels, IntegerType())

new_df = a.withColumn('Rating', labels_udf('num'))

new_df.show()

+---------+--------+---+------+
|Animal   |   Enemy|num|Rating|
+---------+--------+---+------+
|      Dog|     Cat|  0|     5|
|      Cat|     Dog|  1|     4|
|    Mouse|     Cat|  2|     1|
+---------+--------+---+------+

(I would not recommend this if you have much data)

Hope this helps, good luck!




回答3:


You can convert your rating into rdd

rating = [5,4,1]
ratingrdd = sc.parallelize(rating)

And then convert your dataframe to rdd, attach each value of ratingrdd to rdd dataframe using zip and convert the zipped rdd to dataframe again

sqlContext.createDataFrame(a.rdd.zip(ratingrdd).map(lambda x: (x[0][0], x[0][1], x[1])), ["Animal", "Enemy", "Rating"]).show()

It should give you

+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
|   Dog|  Cat|     5|
|   Cat|  Dog|     4|
| Mouse|  Cat|     1|
+------+-----+------+



回答4:


I might be wrong, but I believe the accepted answer will not work. monotonically_increasing_id only guarantees that the ids will be unique and increasing, not that they will be consecutive. Hence using it on two different dataframes will likely create two very different columns, and the join will mostly return empty.

taking inspiration from this answer https://stackoverflow.com/a/48211877/7225303 to a similar question, we could change the incorrect answer to:

from pyspark.sql.window import Window as W
from pyspark.sql import functions as F

a= sqlContext.createDataFrame([("Dog", "Cat"), ("Cat", "Dog"), ("Mouse", "Cat")],
                               ["Animal", "Enemy"])

a.show()

+------+-----+
|Animal|Enemy|
+------+-----+
|   Dog|  Cat|
|   Cat|  Dog|
| Mouse|  Cat|
+------+-----+



#convert list to a dataframe
rating = [5,4,1]
b = sqlContext.createDataFrame([(l,) for l in rating], ['Rating'])
b.show()

+------+
|Rating|
+------+
|     5|
|     4|
|     1|
+------+


a = a.withColumn("idx", F.monotonically_increasing_id())
b = b.withColumn("idx", F.monotonically_increasing_id())

windowSpec = W.orderBy("idx")
a = a.withColumn("idx", F.row_number().over(windowSpec))
b = b.withColumn("idx", F.row_number().over(windowSpec))

a.show()
+------+-----+---+
|Animal|Enemy|idx|
+------+-----+---+
|   Dog|  Cat|  1|
|   Cat|  Dog|  2|
| Mouse|  Cat|  3|
+------+-----+---+

b.show()
+------+---+
|Rating|idx|
+------+---+
|     5|  1|
|     4|  2|
|     1|  3|
+------+---+

final_df = a.join(b, a.idx == b.idx).drop("idx")

+------+-----+------+
|Animal|Enemy|Rating|
+------+-----+------+
|   Dog|  Cat|     5|
|   Cat|  Dog|     4|
| Mouse|  Cat|     1|
+------+-----+------+



回答5:


What you are trying to do does not work, because the rating list is in your driver's memory, whereas the a dataframe is in the executor's memory (the udf works on the executors too).

What you need to do is add the keys to the ratings list, like so:

ratings = [('Dog', 5), ('Cat', 4), ('Mouse', 1)]

Then you create a ratings dataframe from the list and join both to get the new colum added:

ratings_df = spark.createDataFrame(ratings, ['Animal', 'Rating'])
new_df = a.join(ratings_df, 'Animal')


来源:https://stackoverflow.com/questions/48164206/pyspark-adding-a-column-from-a-list-of-values-using-a-udf

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!