问题
I need to plot a table in matplotlib. The problem is some columns have one-level headers, some columns have double-level headers.
Here's what I need:
Here's simple example for one-level headers:
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
df
fig = plt.figure(figsize=(9,2))
ax=plt.subplot(111)
ax.axis('off')
table = ax.table(cellText=df.values, colColours=['grey']*df.shape[1], bbox=[0, 0, 1, 1], colLabels=df.columns)
plt.savefig('Table.jpg')
Last chunk of code produces next picture:
What changes do I need to make to have table I need?
回答1:
Cell merge solution
You can merge the cells produced by ax.table
, a la the cell merge function in an Excel spreadsheet. This allows for a completely automated solution in which you don't need to fiddle with any coordinates (save for the indices of the cell you want to merge):
import matplotlib.pyplot as plt
import pandas as pd
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
fig = plt.figure(figsize=(9,2))
ax=fig.gca()
ax.axis('off')
r,c = df.shape
# ensure consistent background color
ax.table(cellColours=[['lightgray']] + [['none']], bbox=[0,0,1,1])
# plot the real table
table = ax.table(cellText=np.vstack([['', '', 'Food', ''], df.columns, df.values]),
cellColours=[['none']*c]*(2 + r), bbox=[0, 0, 1, 1])
# need to draw here so the text positions are calculated
fig.canvas.draw()
# do the 3 cell merges needed
mergecells(table, (1,0), (0,0))
mergecells(table, (1,1), (0,1))
mergecells(table, (0,2), (0,3))
Output:
Here's the code for the mergecells
function used above:
import matplotlib as mpl
def mergecells(table, ix0, ix1):
ix0,ix1 = np.asarray(ix0), np.asarray(ix1)
d = ix1 - ix0
if not (0 in d and 1 in np.abs(d)):
raise ValueError("ix0 and ix1 should be the indices of adjacent cells. ix0: %s, ix1: %s" % (ix0, ix1))
if d[0]==-1:
edges = ('BRL', 'TRL')
elif d[0]==1:
edges = ('TRL', 'BRL')
elif d[1]==-1:
edges = ('BTR', 'BTL')
else:
edges = ('BTL', 'BTR')
# hide the merged edges
for ix,e in zip((ix0, ix1), edges):
table[ix[0], ix[1]].visible_edges = e
txts = [table[ix[0], ix[1]].get_text() for ix in (ix0, ix1)]
tpos = [np.array(t.get_position()) for t in txts]
# center the text of the 0th cell between the two merged cells
trans = (tpos[1] - tpos[0])/2
if trans[0] > 0 and txts[0].get_ha() == 'right':
# reduce the transform distance in order to center the text
trans[0] /= 2
elif trans[0] < 0 and txts[0].get_ha() == 'right':
# increase the transform distance...
trans[0] *= 2
txts[0].set_transform(mpl.transforms.Affine2D().translate(*trans))
# hide the text in the 1st cell
txts[1].set_visible(False)
回答2:
Yet another option would be to utilize matplotlib.gridspec.GridSpec to plot values and columns using a custom layout:
def format_axes(fig):
for i, ax in enumerate(fig.axes):
ax.tick_params(labelbottom=False, labelleft=False, labelright=False)
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
fig = plt.figure(figsize=(9, 2))
gs = GridSpec(3, 4, figure=fig, wspace=0.0, hspace=0.0,height_ratios=[1, 1, 4])
# plot table header
ax1 = fig.add_subplot(gs[:-1, 0])
ax1.text(0.5, 0.5, df.columns[0], va="center", ha="center")
ax2 = fig.add_subplot(gs[:-1, 1])
ax2.text(0.5, 0.5, df.columns[1], va="center", ha="center")
ax3 = fig.add_subplot(gs[0, -2:])
ax3.text(0.5, 0.5, "Food", va="center", ha="center")
ax4 = fig.add_subplot(gs[1, -2])
ax4.text(0.5, 0.5, df.columns[2], va="center", ha="center")
ax5 = fig.add_subplot(gs[1, -1])
ax5.text(0.5, 0.5, df.columns[3], va="center", ha="center")
# plot table data
ax6 = fig.add_subplot(gs[-1, :])
table = ax6.table(cellText=df.values, cellLoc='center', bbox=[0, 0, 1, 1])
format_axes(fig)
plt.show()
Result
回答3:
I guess that the only way is to add the headers manually. You can control their exact position and size with the bbox
argument. See my example below. You can get more details from this answer: https://stackoverflow.com/a/37440236/2912478
#!/usr/bin/env python
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame()
df['Animal'] = ['Cow', 'Bear']
df['Weight'] = [250, 450]
df['Favorite'] = ['Grass', 'Honey']
df['Least Favorite'] = ['Meat', 'Leaves']
df
fig = plt.figure(figsize=(9,2))
ax=plt.subplot(111)
ax.axis('off')
plt.table(cellText=[['Animal', 'Weight']],
loc='bottom',
bbox=[0, 0.6, 0.5, 0.3]
)
plt.table(cellText=[['Food']],
loc='bottom',
bbox=[0.5, 0.75, 0.5, 0.15]
)
plt.table(cellText=[['Favorite', 'Least favorite']],
loc='bottom',
bbox=[0.5, 0.6, 0.5, 0.15]
)
plt.table(cellText=df.values,
loc='bottom',
bbox=[0, 0, 1, 0.6]
)
plt.show()
Here is the output I get:
来源:https://stackoverflow.com/questions/53783087/double-header-in-matplotlib-table