问题
I have a data like below :
> dplyr::tbl_df(sbp)
Country X1980 X1981 X1982 X1983 X1984 X1985
Albania 132.9270 133.0296 133.1459 133.1868 133.2048 133.2577
Algeria 132.4093 132.1710 131.9649 131.7835 131.6161 131.4345
Andorra 140.8585 140.1076 139.3727 138.6457 137.9525 137.3192
I want to get mean of values for each year for all countries and add a row like World to the end of the dataframe, so that I can plot the change of the mean value through years, in that format.
I tried using gather()
so that I have a data with three columns only, like Country-year-value. However I can not think of a way to calculate the mean for the world.
Country year sbp
Albania X1980 132.9270
Algeria X1980 132.4093
Andorra X1980 140.8585
Can you please advise?
回答1:
A possible solution with base R:
rbind(mydf, cbind(Country = 'World', as.data.frame.list(colMeans(mydf[,-1]))))
which gives:
Country X1980 X1981 X1982 X1983 X1984 X1985 1 Albania 132.9270 133.0296 133.1459 133.1868 133.2048 133.2577 2 Algeria 132.4093 132.1710 131.9649 131.7835 131.6161 131.4345 3 Andorra 140.8585 140.1076 139.3727 138.6457 137.9525 137.3192 4 World 135.3983 135.1027 134.8278 134.5387 134.2578 134.0038
And a tidyverse
solution:
mydf %>%
gather(year, sbp, -1) %>%
bind_rows(., mydf %>%
gather(year, sbp, -1) %>%
group_by(year) %>%
summarise(Country = 'World', sbp = mean(sbp)))
with a long format outcome:
Country year sbp 1 Albania X1980 132.9270 2 Algeria X1980 132.4093 3 Andorra X1980 140.8585 4 Albania X1981 133.0296 5 Algeria X1981 132.1710 6 Andorra X1981 140.1076 7 Albania X1982 133.1459 8 Algeria X1982 131.9649 9 Andorra X1982 139.3727 10 Albania X1983 133.1868 11 Algeria X1983 131.7835 12 Andorra X1983 138.6457 13 Albania X1984 133.2048 14 Algeria X1984 131.6161 15 Andorra X1984 137.9525 16 Albania X1985 133.2577 17 Algeria X1985 131.4345 18 Andorra X1985 137.3192 19 World X1980 135.3983 20 World X1981 135.1027 21 World X1982 134.8278 22 World X1983 134.5387 23 World X1984 134.2578 24 World X1985 134.0038
Used data:
mydf <- read.table(text="Country X1980 X1981 X1982 X1983 X1984 X1985
Albania 132.9270 133.0296 133.1459 133.1868 133.2048 133.2577
Algeria 132.4093 132.1710 131.9649 131.7835 131.6161 131.4345
Andorra 140.8585 140.1076 139.3727 138.6457 137.9525 137.3192", header=TRUE, stringsAsFactors=FALSE)
回答2:
This is a great use case for apply
, no transformations from your original format necessary:
1
means to calculate across rows, and we select columns 2:6
df1$mean <- apply(df1[,2:6], 1, mean)
Country X1980 X1981 X1982 X1983 X1984 X1985 mean
1 Albania 132.9270 133.0296 133.1459 133.1868 133.2048 133.2577 133.0988
2 Algeria 132.4093 132.1710 131.9649 131.7835 131.6161 131.4345 131.9890
3 Andorra 140.8585 140.1076 139.3727 138.6457 137.9525 137.3192 139.3874
You don't really want to add a summary row to your primary table, that's how you might do it in Excel, but in R it's better practice to calculate it separately.
To get the means for each year, we can also use apply, this time using 2
in the apply
function to calculate down columns:
apply(df1[,2:6], 2, mean)
X1980 X1981 X1982 X1983 X1984
135.3983 135.1027 134.8278 134.5387 134.2578
回答3:
You can easily get the means for each year using
world_means <- tbl %>%
select(-Country) %>% summarise_all(mean) %>%
cbind(list(Country="World"), .)
It just computes the mean for all columns except Country
and then binds that with a Country
we call "World"
. To add it to your table, simply use rbind
:
rbind(tbl, world_means)
来源:https://stackoverflow.com/questions/49389204/how-to-get-the-means-of-all-columns-but-one