问题
I have dynamic library created as follows
cat myfile.cc
struct Tcl_Interp;
extern "C" int My_Init(Tcl_Interp *) { return 0; }
1) complile the cc file
g++ -fPIC -c myfile.cc
2) Creating a shared library
g++ -static-libstdc++ -static-libgcc -shared -o libmy.so myfile.o -L/tools/linux64/qt-4.6.0/lib -lQtCore -lQtGui
3) load the library from a TCL proc then I give command
tclsh and given command % load libmy.so
is there any C++ function/ Qt equivalent to load that can load the shared library on demand from another C++ function.
My requirement is to load the dynamic library on run time inside the function and then use the qt functions directly
1) load the qt shared libraries (for lib1.so) 2) call directly the functions without any call for resolve
For example we have dopen, but for that for each function call we have to call dsym. My requirement is only call for shared library then directly call those functions.
回答1:
You want boilerplate-less delay loading. On Windows, MSVC implements delay loading by emitting a stub that resolves the function through a function pointer. You can do the same. First, let's observe that function pointers and functions are interchangeable if all you do is call them. The syntax for invoking a function or a function pointer is the same:
void foo_impl() {}
void (*foo)() = foo_impl;
int main() {
foo_impl();
foo();
}
The idea is to set the function pointer initially to a thunk that will resolve the real function at runtime:
extern void (*foo)();
void foo_thunk() {
foo = QLibrary::resolve("libmylib", "foo");
if (!foo) abort();
return foo();
}
void (*foo)() = foo_thunk;
int main() {
foo(); // calls foo_thunk to resolve foo and calls foo from libmylib
foo(); // calls foo from libmylib
}
When you first call foo
, it will really call foo_thunk
, resolve the function address, and call real foo
implementation.
To do this, you can split the library into two libraries:
- The library implementation. It is unaware of demand-loading.
- A demand-load stub.
The executable will link to the demand-load stub library; that is either static or dynamic. The demand-load stub will automatically resolve the symbols at runtime and call into the implementation.
If you're clever, you can design the header for the implementation such that the header itself can be used to generate all the stubs without having to enter their details twice.
Complete Example
Everything follows, it's also available from https://github.com/KubaO/stackoverflown/tree/master/questions/demand-load-39291032
The top-level project consists of:
lib1
- the dynamic librarylib1_demand
- the static demand-load thunk forlib1
main
- the application that useslib1_demand
demand-load-39291032.pro
TEMPLATE = subdirs
SUBDIRS = lib1 lib1_demand main
main.depends = lib1_demand
lib1_demand.depends = lib1
We can factor out the cleverness into a separate header. This header allows us to define the library interface so that the thunks can be automatically generated.
The heavy use of preprocessor and a somewhat redundant syntax is needed due to limitations of C. If you wanted to implement this for C++ only, there'd be no need to repeat the argument list.
demand_load.h
// Configuration macros:
// DEMAND_NAME - must be set to a unique identifier of the library
// DEMAND_LOAD - if defined, the functions are declared as function pointers, **or**
// DEMAND_BUILD - if defined, the thunks and function pointers are defined
#if defined(DEMAND_FUN)
#error Multiple inclusion of demand_load.h without undefining DEMAND_FUN first.
#endif
#if !defined(DEMAND_NAME)
#error DEMAND_NAME must be defined
#endif
#if defined(DEMAND_LOAD)
// Interface via a function pointer
#define DEMAND_FUN(ret,name,args,arg_call) \
extern ret (*name)args;
#elif defined(DEMAND_BUILD)
// Implementation of the demand loader stub
#ifndef DEMAND_CAT
#define DEMAND_CAT_(x,y) x##y
#define DEMAND_CAT(x,y) DEMAND_CAT_(x,y)
#endif
void (* DEMAND_CAT(resolve_,DEMAND_NAME)(const char *))();
#if defined(__cplusplus)
#define DEMAND_FUN(ret,name,args,arg_call) \
extern ret (*name)args; \
ret name##_thunk args { \
name = reinterpret_cast<decltype(name)>(DEMAND_CAT(resolve_,DEMAND_NAME)(#name)); \
return name arg_call; \
}\
ret (*name)args = name##_thunk;
#else
#define DEMAND_FUN(ret,name,args,arg_call) \
extern ret (*name)args; \
ret name##_impl args { \
name = (void*)DEMAND_CAT(resolve_,DEMAND_NAME)(#name); \
name arg_call; \
}\
ret (*name)args = name##_impl;
#endif // __cplusplus
#else
// Interface via a function
#define DEMAND_FUN(ret,name,args,arg_call) \
ret name args;
#endif
Then, the dynamic library itself:
lib1/lib1.pro
TEMPLATE = lib
SOURCES = lib1.c
HEADERS = lib1.h
INCLUDEPATH += ..
DEPENDPATH += ..
Instead of declaring the functions directly, we'll use DEMAND_FUN
from demand_load.h
. If DEMAND_LOAD_LIB1
is defined when the header is included, it will offer a demand-load interface to the library. If DEMAND_BUILD
is defined, it'll define the demand-load thunks. If neither is defined, it will offer a normal interface.
We take care to undefine the implementation-specific macros so that the global namespace is not polluted. We can then include multiple libraries the project, each one individually selectable between demand- and non-demand loading.
lib1/lib1.h
#ifndef LIB_H
#define LIB_H
#ifdef __cplusplus
extern "C" {
#endif
#define DEMAND_NAME LIB1
#ifdef DEMAND_LOAD_LIB1
#define DEMAND_LOAD
#endif
#include "demand_load.h"
#undef DEMAND_LOAD
DEMAND_FUN(int, My_Add, (int i, int j), (i,j))
DEMAND_FUN(int, My_Subtract, (int i, int j), (i,j))
#undef DEMAND_FUN
#undef DEMAND_NAME
#ifdef __cplusplus
}
#endif
#endif
The implementation is uncontroversial:
lib1/lib1.c
#include "lib1.h"
int My_Add(int i, int j) {
return i+j;
}
int My_Subtract(int i, int j) {
return i-j;
}
For the user of such a library, demand loading is reduced to defining one macro and using the thunk library lib1_demand
instead of the dynamic library lib1
.
main/main.pro
if (true) {
# Use demand-loaded lib1
DEFINES += DEMAND_LOAD_LIB1
LIBS += -L../lib1_demand -llib1_demand
} else {
# Use direct-loaded lib1
LIBS += -L../lib1 -llib1
}
QT = core
CONFIG += console c++11
CONFIG -= app_bundle
TARGET = demand-load-39291032
TEMPLATE = app
INCLUDEPATH += ..
DEPENDPATH += ..
SOURCES = main.cpp
main/main.cpp
#include "lib1/lib1.h"
#include <QtCore>
int main() {
auto a = My_Add(1, 2);
Q_ASSERT(a == 3);
auto b = My_Add(3, 4);
Q_ASSERT(b == 7);
auto c = My_Subtract(5, 7);
Q_ASSERT(c == -2);
}
Finally, the implementation of the thunk. Here we have a choice between using dlopen
+dlsym
or QLibrary
. For simplicity, I opted for the latter:
lib1_demand/lib1_demand.pro
QT = core
TEMPLATE = lib
CONFIG += staticlib
INCLUDEPATH += ..
DEPENDPATH += ..
SOURCES = lib1_demand.cpp
HEADERS = ../demand_load.h
lib1_demand/lib1_demand.cpp
#define DEMAND_BUILD
#include "lib1/lib1.h"
#include <QLibrary>
void (* resolve_LIB1(const char * name))() {
auto f = QLibrary::resolve("../lib1/liblib1", name);
return f;
}
回答2:
Quite apart from the process of loading a library into your C++ code (which Kuber Ober's answer covers just fine) the code that you are loading is wrong; even if you manage to load it, your code will crash! This is because you have a variable of type Tcl_Interp
at file scope; that's wrong use of the Tcl library. Instead, the library provides only one way to obtain a handle to an interpreter context, Tcl_CreateInterp()
(and a few other functions that are wrappers round it), and that returns a Tcl_Interp*
that has already been initialised correctly. (Strictly, it actually returns a handle to what is effectively an internal subclass of Tcl_Interp
, so you really can't usefully allocate one yourself.)
The correct usage of the library is this:
Tcl_FindExecutable(NULL); // Or argv[0] if you have it
Tcl_Interp *interp = Tcl_CreateInterp();
// And now, you can use the rest of the API as you see fit
That's for putting a Tcl interpreter inside your code. To do it the other way round, you create an int My_Init(Tcl_Interp*)
function as you describe and it is used to tell you where the interpreter is, but then you wouldn't be asking how to load the code, as Tcl has reasonable support for that already.
来源:https://stackoverflow.com/questions/39291032/how-to-load-a-dynamic-library-on-demand-from-a-c-function-qt-method