问题
I have read all related questions here but couldn't find a working solution :
My classifier creation :
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
def create_tfidf(f):
docs = []
targets = []
with open(f, "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter=';')
reader.next()
for row in reader:
docs.append(row[1])
targets.append(row[0])
tfidf_matrix = tf.fit_transform(docs)
print tfidf_matrix.shape
# print tf.get_feature_names()
return tfidf_matrix, targets
X,y = create_tfidf("l0.csv")
clf = LinearSVC().fit(X,y)
_ = joblib.dump(clf, 'linearL0_3gram_100K.pkl', compress=9)
This bit works, and generates the .pkl, which I then try to use as such in a different script:
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
clf = joblib.load('linearL0_3gram_100K.pkl')
print clf
test = "My super elaborate test string to test predictions"
print test + clf.predict(tf.transform([test]))[0]
And I get ValueError: Vocabulary wasn't fitted or is empty!
Edit : Error Traceback as requested
File "classifier.py", line 27, in <module>
print test + clf.predict(tf.transform([test]))[0]
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 1313, in transform
X = super(TfidfVectorizer, self).transform(raw_documents)
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 850, in transform
self._check_vocabulary()
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 271, in _check_vocabulary
check_is_fitted(self, 'vocabulary_', msg=msg),
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 627, in check_is_fitted
raise NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.utils.validation.NotFittedError: StemmedTfidfVectorizer - Vocabulary wasn't fitted.
回答1:
Ok, I solved the issue by using a pipeline to get my vectorizer saved within the .plk
Here's how it looks (also, way simpler) :
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
from sklearn.pipeline import Pipeline
import Stemmer
import pickle
english_stemmer = Stemmer.Stemmer('en')
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
def create_tfidf(f):
docs = []
targets = []
with open(f, "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter=';')
reader.next()
for row in reader:
docs.append(row[1])
targets.append(row[0])
return docs, targets
docs,y = create_tfidf("l1.csv")
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
clf = LinearSVC()
vec_clf = Pipeline([('tfvec', tf), ('svm', clf)])
vec_clf.fit(docs,y)
_ = joblib.dump(vec_clf, 'linearL0_3gram_100K.pkl', compress=9)
And on the other side :
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
import Stemmer
import pickle
english_stemmer = Stemmer.Stemmer('en')
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
clf = joblib.load('linearL0_3gram_100K.pkl')
test = ["My super elaborate test string to test predictions"]
print test + clf.predict(test)[0]
Important things to mention :
The transformer is part of the pipeline, as is tf, so there's no need either to redeclare a new vectorizer (which was the failing point earlier as it needed the vocabulary from the trained data), or to .transform() the test string.
来源:https://stackoverflow.com/questions/31744519/load-pickled-classifier-data-vocabulary-not-fitted-error