manually enumerated data structs, need loops to generalize: perceptron algorithm

╄→尐↘猪︶ㄣ 提交于 2019-12-12 06:04:24

问题


My friend and I was having a lot of trouble trying to implement the perceptron algorithm, but then I found this tutorial, it goes through a java implementation and then has some example code. I substituted my own data structures for there ones in the tutorial, and it works! :)

HOWEVER

I made this substitution in the most simplistic possible way, manually enumerating my data structures. This works as a proof of concept, for my experimental "toy" data, but most certainly is not able to tackle the real data I want to consider. It's far too rigid.

Perhaps someone more proficient in abstract thinking and loops would be able to show me how I can improve this code.

The important data structure to consider is Map<File, int[] >, it looks like this:

/data/test/sports/t.s_1.txt, [0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]
/data/test/politics/t.p_0.txt, [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
/data/test/atheism/t.a_0.txt, [0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
/data/test/science/t.s_0.txt, [1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0]

The code that needs to be generalized proceeds this sentence, you can also find the full programme on this github page.

Thank you for your consideration & happy Japanese/Chinese new year!

public static void perceptron( Set<String> GLOBO_DICT, Map<File, int[] > training_perceptron_input, Map<File, int[] > test_perceptron_input)
  {

         //number of features, number of x, y, z
         int size_of_globo_dict = GLOBO_DICT.size();

         //number of instances
         int NUM_INSTANCES = training_perceptron_input.size();


            //three variables (features) they enumerate by
            //features, xyz, i also do that
            double[] a00 = new double [NUM_INSTANCES];
            double[] a01 = new double [NUM_INSTANCES];
            double[] a02 = new double [NUM_INSTANCES];    
            double[] a03 = new double [NUM_INSTANCES];
            double[] a04 = new double [NUM_INSTANCES];
            double[] a05 = new double [NUM_INSTANCES];
            double[] a06 = new double [NUM_INSTANCES];
            double[] a07 = new double [NUM_INSTANCES];
            double[] a08 = new double [NUM_INSTANCES];
            double[] a09 = new double [NUM_INSTANCES];
            double[] a10 = new double [NUM_INSTANCES];
            double[] a11 = new double [NUM_INSTANCES];
            double[] a12 = new double [NUM_INSTANCES];
            double[] a13 = new double [NUM_INSTANCES];
            double[] a14 = new double [NUM_INSTANCES];
            double[] a15 = new double [NUM_INSTANCES];
            double[] a16 = new double [NUM_INSTANCES];
            double[] a17 = new double [NUM_INSTANCES];
            double[] a18 = new double [NUM_INSTANCES];
            double[] a19 = new double [NUM_INSTANCES];
            double[] a20 = new double [NUM_INSTANCES];
            double[] a21 = new double [NUM_INSTANCES];
            double[] a22 = new double [NUM_INSTANCES];
            double[] a23 = new double [NUM_INSTANCES];
            double[] a24 = new double [NUM_INSTANCES];
            double[] a25 = new double [NUM_INSTANCES];
            double[] a26 = new double [NUM_INSTANCES];
            double[] a27 = new double [NUM_INSTANCES];
            double[] a28 = new double [NUM_INSTANCES];
            double[] a29 = new double [NUM_INSTANCES];
            double[] a30 = new double [NUM_INSTANCES];


    //2d array for features
    int x = 0;
    int[][] feature_matrix = new int[ training_perceptron_input.size() ][ GLOBO_DICT.size() ];
    String[][] output_label = new String[ training_perceptron_input.size() ][ 2 ];

    for(Entry<File, int[]> entry : training_perceptron_input.entrySet())
    {
        int[] container =entry.getValue();

        for(int j = 0; j < 4; j++)
        {
            feature_matrix[x][j] = container[j];

            output_label[x][1] = entry.getKey().toString(); 
        }
            x++;
    }



    int[] outputs = new int [NUM_INSTANCES];

    for(int g = 0; g < NUM_INSTANCES; g++)
    {
        a00[g] = feature_matrix[g][ 0];
        a01[g] = feature_matrix[g][ 1];
        a02[g] = feature_matrix[g][ 2];
        a03[g] = feature_matrix[g][ 3];
        a04[g] = feature_matrix[g][ 4];
        a05[g] = feature_matrix[g][ 5];
        a06[g] = feature_matrix[g][ 6];
        a07[g] = feature_matrix[g][ 7];
        a08[g] = feature_matrix[g][ 8];
        a09[g] = feature_matrix[g][ 9];
        a10[g] = feature_matrix[g][10];
        a11[g] = feature_matrix[g][11];
        a12[g] = feature_matrix[g][12];
        a13[g] = feature_matrix[g][13];
        a14[g] = feature_matrix[g][14];
        a15[g] = feature_matrix[g][15];
        a16[g] = feature_matrix[g][16];
        a17[g] = feature_matrix[g][17];
        a18[g] = feature_matrix[g][18];
        a19[g] = feature_matrix[g][19];
        a20[g] = feature_matrix[g][20];
        a21[g] = feature_matrix[g][21];
        a22[g] = feature_matrix[g][22];
        a23[g] = feature_matrix[g][23];
        a24[g] = feature_matrix[g][24];
        a25[g] = feature_matrix[g][25];
        a26[g] = feature_matrix[g][26];
        a27[g] = feature_matrix[g][27];
        a28[g] = feature_matrix[g][28];
        a29[g] = feature_matrix[g][29];
        a30[g] = feature_matrix[g][30];
        if(output_label[g][1].equals( "/home/yamada/Workbench/SUTD/ISTD_50.570/assignments/practice_data/data/train/atheism/a_0.txt" ) )
        {
            outputs[g] = 1;
        }
        else
        {
            outputs[g] = 0;
        }
    }


    double[] weights = new double[ GLOBO_DICT.size() + 1];// 32 for input variables and one for bias
    double localError, globalError;
    int i, p, iteration, output;

    weights[ 0] = randomNumber(0,1);// w1
    weights[ 1] = randomNumber(0,1);// w2
    weights[ 2] = randomNumber(0,1);// w3
    weights[ 3] = randomNumber(0,1);// w4
    weights[ 4] = randomNumber(0,1);// w5
    weights[ 5] = randomNumber(0,1);// w6
    weights[ 6] = randomNumber(0,1);// w7
    weights[ 7] = randomNumber(0,1);// w8
    weights[ 8] = randomNumber(0,1);// w9
    weights[ 9] = randomNumber(0,1);// w10
    weights[10] = randomNumber(0,1);// w11
    weights[11] = randomNumber(0,1);// w12
    weights[12] = randomNumber(0,1);// w13
    weights[13] = randomNumber(0,1);// w14
    weights[14] = randomNumber(0,1);// w15
    weights[15] = randomNumber(0,1);// w16
    weights[16] = randomNumber(0,1);// w17
    weights[17] = randomNumber(0,1);// w18
    weights[18] = randomNumber(0,1);// w19
    weights[19] = randomNumber(0,1);// w20
    weights[20] = randomNumber(0,1);// w21
    weights[21] = randomNumber(0,1);// w22
    weights[22] = randomNumber(0,1);// w23
    weights[23] = randomNumber(0,1);// w24
    weights[24] = randomNumber(0,1);// w25
    weights[25] = randomNumber(0,1);// w26
    weights[26] = randomNumber(0,1);// w27
    weights[27] = randomNumber(0,1);// w28
    weights[28] = randomNumber(0,1);// w29
    weights[29] = randomNumber(0,1);// w30
    weights[30] = randomNumber(0,1);// w31
    weights[31] = randomNumber(0,1);// this is the bias



    iteration = 0;
    do {
        iteration++;
        globalError = 0;
        //loop through all instances (complete one epoch)
        for (p = 0; p < NUM_INSTANCES; p++) 
        {
            // calculate predicted class
            output = calculateOutput(theta,
                                 weights, 
                                 a00[p], 
                                 a01[p], 
                                 a02[p],
                                 a03[p],
                                 a04[p],
                                 a05[p],
                                 a06[p],
                                 a07[p],
                                 a08[p],
                                 a09[p],
                                 a10[p],
                                 a11[p],
                                 a12[p],
                                 a13[p],
                                 a14[p],
                                 a15[p],
                                 a16[p],
                                 a17[p],
                                 a18[p],
                                 a19[p],
                                 a20[p],
                                 a21[p],
                                 a22[p],
                                 a23[p],
                                 a24[p],
                                 a25[p],
                                 a26[p],
                                 a27[p],
                                 a28[p],
                                 a29[p],
                                 a30[p]);
        // difference between predicted and actual class values
            localError = outputs[p] - output;
            //update weights and bias
            weights[ 0] += LEARNING_RATE * localError * a00[p];
            weights[ 1] += LEARNING_RATE * localError * a01[p];
            weights[ 2] += LEARNING_RATE * localError * a02[p];
            weights[ 3] += LEARNING_RATE * localError * a03[p];
            weights[ 4] += LEARNING_RATE * localError * a04[p];
            weights[ 5] += LEARNING_RATE * localError * a05[p];
            weights[ 6] += LEARNING_RATE * localError * a06[p];
            weights[ 7] += LEARNING_RATE * localError * a07[p];
            weights[ 8] += LEARNING_RATE * localError * a08[p];
            weights[ 9] += LEARNING_RATE * localError * a09[p];
            weights[10] += LEARNING_RATE * localError * a10[p];
            weights[11] += LEARNING_RATE * localError * a11[p];
            weights[12] += LEARNING_RATE * localError * a12[p];
            weights[13] += LEARNING_RATE * localError * a13[p];
            weights[14] += LEARNING_RATE * localError * a14[p];
            weights[15] += LEARNING_RATE * localError * a15[p];
            weights[16] += LEARNING_RATE * localError * a16[p];
            weights[17] += LEARNING_RATE * localError * a17[p];
            weights[18] += LEARNING_RATE * localError * a18[p];
            weights[19] += LEARNING_RATE * localError * a19[p];
            weights[20] += LEARNING_RATE * localError * a20[p];
            weights[21] += LEARNING_RATE * localError * a21[p];
            weights[22] += LEARNING_RATE * localError * a22[p];
            weights[23] += LEARNING_RATE * localError * a23[p];
            weights[24] += LEARNING_RATE * localError * a24[p];
            weights[25] += LEARNING_RATE * localError * a25[p];
            weights[26] += LEARNING_RATE * localError * a26[p];
            weights[27] += LEARNING_RATE * localError * a27[p];
            weights[28] += LEARNING_RATE * localError * a28[p];
            weights[29] += LEARNING_RATE * localError * a29[p];
            weights[30] += LEARNING_RATE * localError * a30[p];
            weights[31] += LEARNING_RATE * localError;



            //summation of squared error (error value for all instances)
            globalError += (localError*localError);
        }

     /* Root Mean Squared Error */
     System.out.println("Iteration "+iteration+" : RMSE = "+Math.sqrt(globalError/NUM_INSTANCES));
    } 
    while (globalError != 0 && iteration <= MAX_ITER);

    System.out.println("\n=======\nDecision boundary equation:");

    System.out.println(
         " a00 *" + 
         weights[ 0] + 
         " a01 *" + 
         weights[ 1] + 
         " a02 *" + 
         weights[ 2] + 
         " a03 *" + 
         weights[ 3] + 
         " a04 *" + 
         weights[ 4] + 
         " a05 *" + 
         weights[ 5] + 
         " a06 *" + 
         weights[ 6] + 
         " a07 *" + 
         weights[ 7] + 
         " a08 *" + 
         weights[ 8] + 
         " a09 *" + 
         weights[ 9] + 
         " a10 *" + 
         weights[10] + 
         " a11 *" + 
         weights[11] + 
         " a12 *" + 
         weights[12] + 
         " a13 *" + 
         weights[13] + 
         " a14 *" + 
         weights[14] + 
         " a15 *" + 
         weights[15] + 
         " a16 *" + 
         weights[16] + 
         " a17 *" + 
         weights[17] + 
         " a18 *" +
         weights[18] + 
         " a19 *" + 
         weights[19] + 
         " a20 *" + 
         weights[20] + 
         " a21 *" + 
         weights[21] + 
         " a22 *" + 
         weights[22] + 
         " a23 *" + 
         weights[23] + 
         " a24 *" + 
         weights[24] + 
         " a25 *" +
         weights[25] + 
         " a26 *" + 
         weights[26] + 
         " a27 *" + 
         weights[27] + 
         " a28 *" + 
         weights[28] + 
         " a29 *" + 
         weights[29] + 
         " a30 *" +
         weights[30] +
         " bias: " +
         weights[31]);




    //2d array for features
    int x_TEST = 0;
    int[][] feature_matrix_TEST = new int[ test_perceptron_input.size() ][ GLOBO_DICT.size() ];

    for(Entry<File, int[]> entry : test_perceptron_input.entrySet())
    {
        int[] container =entry.getValue();

        for(int jj = 0; jj < 4; jj++)
        {
            feature_matrix_TEST[x_TEST][jj] = container[jj];

        }
            x_TEST++;
    }



    //three variables (features) they enumerate by
    //features, xyz, i also do that
    double[] z00 = new double [NUM_INSTANCES];
    double[] z01 = new double [NUM_INSTANCES];
    double[] z02 = new double [NUM_INSTANCES];    
    double[] z03 = new double [NUM_INSTANCES];
    double[] z04 = new double [NUM_INSTANCES];
    double[] z05 = new double [NUM_INSTANCES];
    double[] z06 = new double [NUM_INSTANCES];
    double[] z07 = new double [NUM_INSTANCES];
    double[] z08 = new double [NUM_INSTANCES];
    double[] z09 = new double [NUM_INSTANCES];
    double[] z10 = new double [NUM_INSTANCES];
    double[] z11 = new double [NUM_INSTANCES];
    double[] z12 = new double [NUM_INSTANCES];
    double[] z13 = new double [NUM_INSTANCES];
    double[] z14 = new double [NUM_INSTANCES];
    double[] z15 = new double [NUM_INSTANCES];
    double[] z16 = new double [NUM_INSTANCES];
    double[] z17 = new double [NUM_INSTANCES];
    double[] z18 = new double [NUM_INSTANCES];
    double[] z19 = new double [NUM_INSTANCES];
    double[] z20 = new double [NUM_INSTANCES];
    double[] z21 = new double [NUM_INSTANCES];
    double[] z22 = new double [NUM_INSTANCES];
    double[] z23 = new double [NUM_INSTANCES];
    double[] z24 = new double [NUM_INSTANCES];
    double[] z25 = new double [NUM_INSTANCES];
    double[] z26 = new double [NUM_INSTANCES];
    double[] z27 = new double [NUM_INSTANCES];
    double[] z28 = new double [NUM_INSTANCES];
    double[] z29 = new double [NUM_INSTANCES];
    double[] z30 = new double [NUM_INSTANCES];




 for(int g = 0; g < NUM_INSTANCES; g++)
 {
     z00[g] = feature_matrix_TEST[g][ 0];
     z01[g] = feature_matrix_TEST[g][ 1];
     z02[g] = feature_matrix_TEST[g][ 2];
     z03[g] = feature_matrix_TEST[g][ 3];
     z04[g] = feature_matrix_TEST[g][ 4];
     z05[g] = feature_matrix_TEST[g][ 5];
     z06[g] = feature_matrix_TEST[g][ 6];
     z07[g] = feature_matrix_TEST[g][ 7];
     z08[g] = feature_matrix_TEST[g][ 8];
     z09[g] = feature_matrix_TEST[g][ 9];
     z10[g] = feature_matrix_TEST[g][10];
     z11[g] = feature_matrix_TEST[g][11];
     z12[g] = feature_matrix_TEST[g][12];
     z13[g] = feature_matrix_TEST[g][13];
     z14[g] = feature_matrix_TEST[g][14];
     z15[g] = feature_matrix_TEST[g][15];
     z16[g] = feature_matrix_TEST[g][16];
     z17[g] = feature_matrix_TEST[g][17];
     z18[g] = feature_matrix_TEST[g][18];
     z19[g] = feature_matrix_TEST[g][19];
     z20[g] = feature_matrix_TEST[g][20];
     z21[g] = feature_matrix_TEST[g][21];
     z22[g] = feature_matrix_TEST[g][22];
     z23[g] = feature_matrix_TEST[g][23];
     z24[g] = feature_matrix_TEST[g][24];
     z25[g] = feature_matrix_TEST[g][25];
     z26[g] = feature_matrix_TEST[g][26];
     z27[g] = feature_matrix_TEST[g][27];
     z28[g] = feature_matrix_TEST[g][28];
     z29[g] = feature_matrix_TEST[g][29];
     z30[g] = feature_matrix_TEST[g][30];
 }




  int output_TEST;
  // calculate predicted class TEST
  output_TEST = calculateOutput(theta,
                         weights, 
                         z00[2], 
                         z01[2], 
                         z02[2],
                         z03[2],
                         z04[2],
                         z05[2],
                         z06[2],
                         z07[2],
                         z08[2],
                         z09[2],
                         z10[2],
                         z11[2],
                         z12[2],
                         z13[2],
                         z14[2],
                         z15[2],
                         z16[2],
                         z17[2],
                         z18[2],
                         z19[2],
                         z20[2],
                         z21[2],
                         z22[2],
                         z23[2],
                         z24[2],
                         z25[2],
                         z26[2],
                         z27[2],
                         z28[2],
                         z29[2],
                         z30[2]);



  System.out.println("\n=======\nTEST Point:");



  System.out.println(
                     "z00[0]:" + z00[0] + 
                     "z01[0]:" + z01[0] +  
                     "z02[0]:" + z02[0] + 
                     "z03[0]:" + z03[0] + 
                     "z04[0]:" + z04[0] + 
                     "z05[0]:" + z05[0] + 
                     "z06[0]:" + z06[0] + 
                     "z07[0]:" + z07[0] + 
                     "z08[0]:" + z08[0] + 
                     "z09[0]:" + z09[0] + 
                     "z10[0]:" + z10[0] + 
                     "z11[0]:" + z11[0] + 
                     "z12[0]:" + z12[0] + 
                     "z13[0]:" + z13[0] + 
                     "z14[0]:" + z14[0] + 
                     "z15[0]:" + z15[0] + 
                     "z16[0]:" + z16[0] + 
                     "z17[0]:" + z17[0] + 
                     "z18[0]:" + z18[0] + 
                     "z19[0]:" + z19[0] + 
                     "z20[0]:" + z20[0] + 
                     "z21[0]:" + z21[0] + 
                     "z22[0]:" + z22[0] + 
                     "z23[0]:" + z23[0] + 
                     "z24[0]:" + z24[0] + 
                     "z25[0]:" + z25[0] + 
                     "z26[0]:" + z26[0] + 
                     "z27[0]:" + z27[0] + 
                     "z28[0]:" + z28[0] + 
                     "z29[0]:" + z29[0] + 
                     "z30[0]:" + z30[0]
                    );


      System.out.println("class = "+output_TEST);
    }
  //end main  

 /**
  * returns a random double value within a given range
  * @param min the minimum value of the required range (int)
  * @param max the maximum value of the required range (int)
  * @return a random double value between min and max
  */ 
 public static double randomNumber(int min , int max) {
     DecimalFormat df = new DecimalFormat("#.####");
     double d = min + Math.random() * (max - min);
     String s = df.format(d);
     double x = Double.parseDouble(s);
     return x;
 }

 /**
  * returns either 1 or 0 using a threshold function
  * theta is 0range
  * @param theta an integer value for the threshold
  * @param weights[] the array of weights
  * @param x the x input value
  * @param y the y input value
  * @param z the z input value
  * @return 1 or 0
  */ 
 static int calculateOutput(int theta, 
                        double weights[], 
                        double a00, 
                        double a01,
                        double a02,
                        double a03,
                        double a04,
                        double a05,
                        double a06,
                        double a07,
                        double a08,
                        double a09,
                        double a10,
                        double a11,
                        double a12,
                        double a13,
                        double a14,
                        double a15,
                        double a16,
                        double a17,
                        double a18,
                        double a19,
                        double a20,
                        double a21,
                        double a22,
                        double a23,
                        double a24,
                        double a25,
                        double a26,
                        double a27,
                        double a28,
                        double a29,
                        double a30)
 {
    double sum = a00 * 
             weights[ 0] + 
             a01 * 
             weights[ 1] + 
             a02 * 
             weights[ 2] + 
             a03 * 
             weights[ 3] + 
             a04 * 
             weights[ 4] + 
             a05 * 
             weights[ 5] + 
             a06 * 
             weights[ 6] + 
             a07 * 
             weights[ 7] + 
             a08 * 
             weights[ 8] + 
             a09 * 
             weights[ 9] + 
             a10 * 
             weights[10] + 
             a11 * 
             weights[11] + 
             a12 * 
             weights[12] + 
             a13 * 
             weights[13] + 
             a14 * 
             weights[14] + 
             a15 * 
             weights[15] + 
             a16 * 
             weights[16] + 
             a17 * 
             weights[17] + 
             a18 * 
             weights[18] + 
             a19 * 
             weights[19] + 
             a20 * 
             weights[20] + 
             a21 * 
             weights[21] + 
             a22 * 
             weights[22] + 
             a23 * 
             weights[23] + 
             a24 * 
             weights[24] + 
             a25 *
             weights[25] + 
             a26 * 
             weights[26] + 
             a27 * 
             weights[27] + 
             a28 * 
             weights[28] + 
             a29 * 
             weights[29] + 
             a30 *
             weights[30] +  
             weights[31];

    return (sum >= theta) ? 1 : 0;
 }

}

回答1:


Here is a more generalized version your Perceptron class, simplified to reduce code duplication. Though untested, this is mechanically equivalent to the code you presented in your question.

class Perceptron {
    static final int MAX_ITER = 100;
    static final double LEARNING_RATE = 0.1;
    static final int THETA = 0;
    static final String FILEPATH =
        "/home/yamada/Workbench/SUTD/ISTD_50.570/assignments/practice_data/data/train/atheism/a_0.txt";

    public static void perceptron(Set<String> globoDict,
        Map<File, int[]> trainingPerceptronInput,
        Map<File, int[]> testPerceptronInput)
    {
        final int globoDictSize = globoDict.size(); // number of features (x, y, z)

        // weights total 32 (31 for input variables and one for bias)
        double[] weights = new double[globoDictSize + 1];
        for (int i = 0; i < weights.length; i++) {
            weights[i] = Math.floor(Math.random() * 10000) / 10000;
        }

        int inputSize = trainingPerceptronInput.size();
        int[] outputs = new int[inputSize];
        final double[][] a =
            initializeOutput(trainingPerceptronInput, globoDictSize, outputs);

        double globalError;
        int iteration = 0;
        do {
            iteration++;
            globalError = 0;
            // loop through all instances (complete one epoch)
            for (int p = 0; p < inputSize; p++) {
                // calculate predicted class
                int output = calculateOutput(THETA, weights, a, p);
                // difference between predicted and actual class values
                double localError = outputs[p] - output;
                int i;
                for (i = 0; i < a.length; i++) {
                    weights[i] += LEARNING_RATE * localError * a[i][p];
                }
                weights[i] += LEARNING_RATE * localError;

                // summation of squared error (error value for all instances)
                globalError += localError * localError;
            }

            /* Root Mean Squared Error */
            System.out.println("Iteration "
                + iteration + " : RMSE = " + Math.sqrt(globalError
                    / inputSize));
        } while (globalError != 0 && iteration <= MAX_ITER);

        System.out.println("\n=======\nDecision boundary equation:");
        int i;
        for (i = 0; i < a.length; i++) {
            System.out.print(" a");
            if (i < 10) System.out.print(0);
            System.out.print(i + " *" + weights[i]);
        }
        System.out.println(" bias: " + weights[i]);

        inputSize = testPerceptronInput.size();
        outputs = new int[inputSize];
        double[][] z = initializeOutput(testPerceptronInput, globoDictSize, outputs);

        // calculate predicted class TEST
        int output = calculateOutput(THETA, weights, z, 2);

        System.out.println("\n=======\nTEST Point:");
        for (i = 0; i < z.length; i++) {
            System.out.print(" z");
            if (i < 10) System.out.print(0);
            System.out.print(i + "[0]" + z[i][0]);
        }
        System.out.println();
        System.out.println("class = " + output);
    }

    static double[][] initializeOutput(
        Map<File, int[]> perceptronInput, int size, int[] outputs)
    {
        final int inputSize = perceptronInput.size();
        final double[][] a = new double[size][inputSize];

        // 2d array for features
        int[][] feature_matrix = new int[inputSize][size];
        String[] output_label = new String[inputSize];
        int x = 0;
        for (Entry<File, int[]> entry : perceptronInput.entrySet()) {
            int[] container = entry.getValue();

            for (int j = 0; j < container.length; j++) {
                feature_matrix[x][j] = container[j];
                output_label[x] = String.valueOf(entry.getKey());
            }
            x++;
        }

        for (x = 0; x < inputSize; x++) {
            for (int i = 0; i < a.length; i++) {
                a[i][x] = feature_matrix[x][i];
            }
            outputs[x] = output_label[x].equals(FILEPATH) ? 1 : 0;
        }

        return a;
    }

    /**
     * returns either 1 or 0 using a threshold function
     * theta is 0range
     * @param theta an integer value for the threshold
     * @param weights the array of weights
     * @param a the array of inputs
     * @return 1 or 0
     */
    static int calculateOutput(int theta, double[] weights, double[][] a, int index)
    {
        double sum = 0;
        int i;
        for (i = 0; i < a.length; i++) {
            sum += weights[i] * a[i][index];
        }
        sum += weights[i];
        return (sum >= theta) ? 1 : 0;
    }
}

I hope this is instructional for you.



来源:https://stackoverflow.com/questions/28585880/manually-enumerated-data-structs-need-loops-to-generalize-perceptron-algorithm

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!