问题
I have two csv file. File 1
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot
2,66M,J,Rock,F,1995,201211.0
3,David,HM,Lee,M,,201211.0
6,66M,,Rock,F,,201211.0
0,David,H M,Lee,,1990,201211.0
3,Marc,H,Robert,M,2000,201211.0
6,Marc,M,Robert,M,,201211.0
6,Marc,MS,Robert,M,2000,201211.0
3,David,M,Lee,,1990,201211.0
5,Paul,ABC,Row,F,2008,201211.0
3,Paul,ACB,Row,,,201211.0
4,David,,Lee,,1990,201211.0
4,66,J,Rock,,1995,201211.0
File 2
PID,FNAME,MNAME,LNAME,GENDER,DOB
S2,66M,J,Rock,F,1995
S3,David,HM,Lee,M,1990
S0,Marc,HM,Robert,M,2000
S1,Marc,MS,Robert,M,2000
S6,Paul,,Row,M,2008
S7,Sam,O,Baby,F,2018
What I want to do is to use the crosswalk file, File 2, to back out those observations' PID in File 1 based on Columns FNAME,MNAME,LNAME,GENDER, and DOB. Because the corresponding information in observations of File 1 is not complete, I'm thinking of using fuzzy matching to back out their PID as many as possible (of course the level accuracy should be taken into account). For example, the observations with FNAME "Paul" and LNAME "Row" in File 1 should be assigned the same PID because there is only one similar observation in File 2. But for the observations with FNAME "Marc" and LNAME "Robert", Marc,MS,Robert,M,2000,201211.0
should be assigned PID "S1", Marc,H,Robert,M,2000,201211.0
PID "S0" and Marc,M,Robert,M,,201211.0
either "S0" or "S1".
Since I want to compensate File 1's PID as many as possible while keeping high accuracy, I consider three steps. First, use command to make sure that if and only if those information in FNAME,MNAME,LNAME,GENDER, and DOB are all completely matched, observations in File 1 can be assigned a PID. The output should be
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,PID
2,66M,J,Rock,F,1995,201211.0,S2
3,David,HM,Lee,M,,201211.0,
6,66M,,Rock,F,,201211.0,
0,David,H M,Lee,,1990,201211.0,
3,Marc,H,Robert,M,2000,201211.0,
6,Marc,M,Robert,M,,201211.0,
6,Marc,MS,Robert,M,2000,201211.0,
3,David,M,Lee,,1990,201211.0,
5,Paul,ABC,Row,F,2008,201211.0,
3,Paul,ACB,Row,,,201211.0,
4,David,,Lee,,1990,201211.0,
4,66,J,Rock,,1995,201211.0,
Next, write another command to guarantee that while DOB information are completely same, use fuzzy matching for FNAME,MNAME,LNAME,GENDER to back out File 1's observations' PID, which is not identified in the first step. So the output through these two steps is supposed to be
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,PID
2,66M,J,Rock,F,1995,201211.0,S2
3,David,HM,Lee,M,,201211.0,
6,66M,,Rock,F,,201211.0,
0,David,H M,Lee,,1990,201211.0,S3
3,Marc,H,Robert,M,2000,201211.0,S0
6,Marc,M,Robert,M,,201211.0,
6,Marc,MS,Robert,M,2000,201211.0,S1
3,David,M,Lee,,1990,201211.0,S3
5,Paul,ABC,Row,F,2008,201211.0,S6
3,Paul,ACB,Row,,,201211.0,
4,David,,Lee,,1990,201211.0,S3
4,66,J,Rock,,1995,201211.0,S2
In the final step, use a new command to do fuzzy matching for all related columns, namely FNAME,MNAME,LNAME,GENDER, and DOB to compensate the remained observations' PID. So the final output is expected to be
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,PID
2,66M,J,Rock,F,1995,201211.0,S2
3,David,HM,Lee,M,,201211.0,S3
6,66M,,Rock,F,,201211.0,S2
0,David,H M,Lee,,1990,201211.0,S3
3,Marc,H,Robert,M,2000,201211.0,S0
6,Marc,M,Robert,M,,201211.0,S1
6,Marc,MS,Robert,M,2000,201211.0,S1
3,David,M,Lee,,1990,201211.0,S3
5,Paul,ABC,Row,F,2008,201211.0,S6
3,Paul,ACB,Row,,,201211.0,S6
4,David,,Lee,,1990,201211.0,S3
4,66,J,Rock,,1995,201211.0,S2
I need to keep the order of File 1's observations so it must be kind of leftouter join. Because my original data size is about 100Gb, I want to use Linux to deal with my issue.
But I have no idea how to complete the last two steps through awk
or any other command in Linux. Is there anyone who can give me a favor? Thank you.
回答1:
Here is a shot at it with GNU awk (using PROCINFO["sorted_in"]
to pick the most suitable candidate). It hashes the file2
's field values per field and attaches the PID
to the value, like field[2]["66M"]="S2"
and for each record in file1
counts the amounts of PID
matches and prints the one with the biggest count:
BEGIN {
FS=OFS=","
PROCINFO["sorted_in"]="@val_num_desc"
}
NR==FNR { # file2
for(i=1;i<=6;i++) # fields 1-6
if($i!="") {
field[i][$i]=field[i][$i] (field[i][$i]==""?"":OFS) $1 # attach PID to value
}
next
}
{ # file1
for(i=1;i<=6;i++) { # fields 1-6
if($i in field[i]) { # if value matches
split(field[i][$i],t,FS) # get PIDs
for(j in t) { # and
matches[t[j]]++ # increase PID counts
}
} else { # if no value match
for(j in field[i]) # for all field values
if($i~j || j~$i) # "go fuzzy" :D
matches[field[i][j]]+=0.5 # fuzzy is half a match
}
}
for(i in matches) { # the best match first
print $0,i
delete matches
break # we only want the best match
}
}
Output:
D,FNAME,MNAME,LNAME,GENDER,DOB,snapshot,PID
2,66M,J,Rock,F,1995,201211.0,S2
3,David,HM,Lee,M,,201211.0,S3
6,66M,,Rock,F,,201211.0,S2
0,David,H M,Lee,,1990,201211.0,S3
3,Marc,H,Robert,M,2000,201211.0,S0
6,Marc,M,Robert,M,,201211.0,S1
6,Marc,MS,Robert,M,2000,201211.0,S1
3,David,M,Lee,,1990,201211.0,S3
5,Paul,ABC,Row,F,2008,201211.0,S6
3,Paul,ACB,Row,,,201211.0,S6
4,David,,Lee,,1990,201211.0,S3
4,66,J,Rock,,1995,201211.0,S2
The "fuzzy match" here is naivistic if($i~j || j~$i)
but feel free to replace it with any approximate matching algorithm, for example there are a few implementations of the Levenshtein distance algorithms floating in the internets. Rosetta seems to have one.
You didn't mention how big file2
is but if it's way beyond your memory capasity, you may want to consider spliting the files somehow.
Update: A version that maps file1
fields to file2
fields (as mentioned in comments):
BEGIN {
FS=OFS=","
PROCINFO["sorted_in"]="@val_num_desc"
map[1]=1 # map file1 fields to file2 fields
map[2]=3
map[3]=4
map[4]=2
map[5]=5
map[7]=6
}
NR==FNR { # file2
for(i=1;i<=6;i++) # fields 1-6
if($i!="") {
field[i][$i]=field[i][$i] (field[i][$i]==""?"":OFS) $1 # attach PID to value
}
next
}
{ # file1
for(i in map) {
if($i in field[map[i]]) { # if value matches
split(field[map[i]][$i],t,FS) # get PIDs
for(j in t) { # and
matches[t[j]]++ # increase PID counts
}
} else { # if no value match
for(j in field[map[i]]) # for all field values
if($i~j || j~$i) # "go fuzzy" :D
matches[field[map[i]][j]]+=0.5 # fuzzy is half a match
}
}
for(i in matches) { # the best match first
print $0,i
delete matches
break # we only want the best match
}
}
来源:https://stackoverflow.com/questions/58254198/is-there-any-command-to-do-fuzzy-matching-in-linux-based-on-multiple-columns