问题
I'm attempting to use multiprocessing to run many simulations across multiple processes; however, the code I have written only uses 1 of the processes as far as I can tell.
Updated
I've gotten all the processes to work (I think) thanks to @PaulBecotte ; however, the multiprocessing seems to run significantly slower than its non-multiprocessing counterpart.
For instance, not including the function and class declarations/implementations and imports, I have:
def monty_hall_sim(num_trial, player_type='AlwaysSwitchPlayer'):
if player_type == 'NeverSwitchPlayer':
player = NeverSwitchPlayer('Never Switch Player')
else:
player = AlwaysSwitchPlayer('Always Switch Player')
return (MontyHallGame().play_game(player) for trial in xrange(num_trial))
def do_work(in_queue, out_queue):
while True:
try:
f, args = in_queue.get()
ret = f(*args)
for result in ret:
out_queue.put(result)
except:
break
def main():
logging.getLogger().setLevel(logging.ERROR)
always_switch_input_queue = multiprocessing.Queue()
always_switch_output_queue = multiprocessing.Queue()
total_sims = 20
num_processes = 5
process_sims = total_sims/num_processes
with Timer(timer_name='Always Switch Timer'):
for i in xrange(num_processes):
always_switch_input_queue.put((monty_hall_sim, (process_sims, 'AlwaysSwitchPlayer')))
procs = [multiprocessing.Process(target=do_work, args=(always_switch_input_queue, always_switch_output_queue)) for i in range(num_processes)]
for proc in procs:
proc.start()
always_switch_res = []
while len(always_switch_res) != total_sims:
always_switch_res.append(always_switch_output_queue.get())
always_switch_success = float(always_switch_res.count(True))/float(len(always_switch_res))
print '\tLength of Always Switch Result List: {alw_sw_len}'.format(alw_sw_len=len(always_switch_res))
print '\tThe success average of switching doors was: {alw_sw_prob}'.format(alw_sw_prob=always_switch_success)
which yields:
Time Elapsed: 1.32399988174 seconds
Length: 20
The success average: 0.6
However, I am attempting to use this for total_sims = 10,000,000
over num_processes = 5
, and doing so has taken significantly longer than using 1 process (1 process returned in ~3 minutes). The non-multiprocessing counterpart I'm comparing it to is:
def main():
logging.getLogger().setLevel(logging.ERROR)
with Timer(timer_name='Always Switch Monty Hall Timer'):
always_switch_res = [MontyHallGame().play_game(AlwaysSwitchPlayer('Monty Hall')) for x in xrange(10000000)]
always_switch_success = float(always_switch_res.count(True))/float(len(always_switch_res))
print '\n\tThe success average of not switching doors was: {not_switching}' \
'\n\tThe success average of switching doors was: {switching}'.format(not_switching=never_switch_success,
switching=always_switch_success)
回答1:
You could try import “process “ under some if statements
回答2:
EDIT- you changed some stuff, let me try and explain a bit better.
Each message you put into the input queue will cause the monty_hall_sim function to get called and send num_trial messages to the output queue.
So your original implementation was right- to get 20 output messages, send in 5 input messages.
However, your function is slightly wrong.
for trial in xrange(num_trial):
res = MontyHallGame().play_game(player)
yield res
This will turn the function into a generator that will provide a new value on each next() call- great! The problem is here
while True:
try:
f, args = in_queue.get(timeout=1)
ret = f(*args)
out_queue.put(ret.next())
except:
break
Here, on each pass through the loop you create a NEW generator with a NEW message. The old one is thrown away. So here, each input message only adds a single output message to the queue before you throw it away and get another one. The correct way to write this is-
while True:
try:
f, args = in_queue.get(timeout=1)
ret = f(*args)
for result in ret:
out_queue.put(ret.next())
except:
break
Doing it this way will continue to yield output messages from the generator until it finishes (after yielding 4 messages in this case)
回答3:
I was able to get my code to run significantly faster by changing monty_hall_sim's return to a list comprehension, having do_work add the lists to the output queue, and then extend the results list of main with the lists returned by the output queue. Made it run in ~13 seconds.
来源:https://stackoverflow.com/questions/51922119/multiprocessing-running-slower-than-a-single-process