scipy.curve_fit() returns multiple lines

天大地大妈咪最大 提交于 2019-12-11 10:11:35

问题


I am new to python and was trying to fit dataset distribution using the following code. The actual data is a list that contains two columns- predicted market price and actual market price. And I was trying to use scipy.curve_fit() but it gave me many lines plotted at the same place. Any help is appreciated.

# import the necessary modules and define a func.
from scipy.optimize import curve_fit

def func(x, a, b, c):
    return a * x** b + c

# my data
pred_data = [3.0,1.0,1.0,7.0,6.0,1.0,7.0,4.0,9.0,3.0,5.0,5.0,2.0,6.0,8.0]
actu_data =[ 3.84,1.55,1.15,7.56,6.64,1.09,7.12,4.17,9.45,3.12,5.37,5.65,1.92,6.27,7.63]
popt, pcov = curve_fit(func, pred_data, actu_data)

#adjusting y 
yaj = func(pred_data, popt[0],popt[1], popt[2])

# plot the data
plt.plot(pred_data,actu_data, 'ro', label = 'Data')
plt.plot(pred_data,yaj,'b--', label = 'Best fit')

plt.legend()
plt.show()

回答1:


Scipy doesn't produce multiple lines, the strange output is caused by the way you present your unsorted data to matplotlib. Sort your x-values and you get the desired output:

from scipy.optimize import curve_fit

def func(x, a, b, c):
    return a * x** b + c

# my data
pred_data = [3.0,1.0,1.0,7.0,6.0,1.0,7.0,4.0,9.0,3.0,5.0,5.0,2.0,6.0,8.0]
actu_data =[ 3.84,1.55,1.15,7.56,6.64,1.09,7.12,4.17,9.45,3.12,5.37,5.65,1.92,6.27,7.63]
popt, pcov = curve_fit(func, pred_data, actu_data)

#adjusting y 
yaj = func(sorted(pred_data), *popt)

# plot the data
plt.plot(pred_data,actu_data, 'ro', label = 'Data')
plt.plot(sorted(pred_data),yaj,'b--', label = 'Best fit')

plt.legend()
plt.show()

A better way is of course to define an evenly-spaced high resolution array for your x-values and calculate the fit for this array to have a smoother representation of your fit function:

from scipy.optimize import curve_fit
import numpy as np

def func(x, a, b, c):
    return a * x** b + c

# my data
pred_data = [3.0,1.0,1.0,7.0,6.0,1.0,7.0,4.0,9.0,3.0,5.0,5.0,2.0,6.0,8.0]
actu_data =[ 3.84,1.55,1.15,7.56,6.64,1.09,7.12,4.17,9.45,3.12,5.37,5.65,1.92,6.27,7.63]
popt, pcov = curve_fit(func, pred_data, actu_data)

xaj = np.linspace(min(pred_data), max(pred_data), 1000)
yaj = func(xaj, *popt)

# plot the data
plt.plot(pred_data,actu_data, 'ro', label = 'Data')
plt.plot(xaj, yaj,'b--', label = 'Best fit')

plt.legend()
plt.show()


来源:https://stackoverflow.com/questions/50516862/scipy-curve-fit-returns-multiple-lines

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!