问题
In my mind, what I'm trying to do ought to be straightforward, as straightforward as passing it into the constructor, but in reality it's not. I have a dictionary like below.
d = {"russell": {"score": numpy.random.rand(), "ping": numpy.random.randint(10, 100)},
"cantor": {"score": numpy.random.rand(), "ping": numpy.random.randint(10, 100)},
"godel": {"score": numpy.random.rand(), "ping": numpy.random.randint(10, 100)}}
I would like to do something like pandas.Series(d)
and get a Series
instance like below.
russell score 0.87391482
ping 23
cantor score 0.77821932
ping 16
godel score 0.53372128
ping 35
But what I actually get is below.
cantor {'ping': 44, 'score': 0.007408727109865398}
godel {'ping': 41, 'score': 0.9338940910283948}
russell {'ping': 74, 'score': 0.733817307366666}
Is there a way to achieve something like what I'm trying to achieve?
回答1:
I think you need DataFrame constructor with unstack:
import pandas as pd
import numpy as np
d = {"russell": {"score": np.random.rand(), "ping": np.random.randint(10, 100)},
"cantor": {"score": np.random.rand(), "ping": np.random.randint(10, 100)},
"godel": {"score": np.random.rand(), "ping": np.random.randint(10, 100)}}
print (pd.DataFrame(d).unstack())
cantor ping 33.000000
score 0.240253
godel ping 64.000000
score 0.435040
russell ping 41.000000
score 0.171810
dtype: float64
Also if need swap levels in MultiIndex
use stack:
print (pd.DataFrame(d).stack())
ping cantor 64.000000
godel 40.000000
russell 66.000000
score cantor 0.265771
godel 0.283725
russell 0.085856
dtype: float64
来源:https://stackoverflow.com/questions/40261031/creating-a-multiindexed-series-with-a-nested-dictionary