问题
I have installed Cuda 10.1 and cudnn on Ubuntu 18.04 and it seems to be installed properly as type nvcc and nvidia-smi, I get proper response:
user:~$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Fri_Feb__8_19:08:17_PST_2019
Cuda compilation tools, release 10.1, V10.1.105
user:~$ nvidia-smi
Mon Mar 18 14:36:47 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.43 Driver Version: 418.43 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro K5200 Off | 00000000:03:00.0 On | Off |
| 26% 39C P8 14W / 150W | 225MiB / 8118MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1538 G /usr/lib/xorg/Xorg 32MiB |
| 0 1583 G /usr/bin/gnome-shell 5MiB |
| 0 3008 G /usr/lib/xorg/Xorg 100MiB |
| 0 3120 G /usr/bin/gnome-shell 82MiB |
+-----------------------------------------------------------------------------+
I have installed tensorflow using:
user:~$ sudo pip3 install --upgrade tensorflow-gpu
The directory '/home/amin/.cache/pip/http' or its parent directory is not owned by the current user and the cache has been disabled. Please check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
The directory '/home/amin/.cache/pip' or its parent directory is not owned by the current user and caching wheels has been disabled. check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
Requirement already up-to-date: tensorflow-gpu in /usr/local/lib/python3.6/dist-packages (1.13.1)
Requirement already satisfied, skipping upgrade: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (1.0.7)
Requirement already satisfied, skipping upgrade: protobuf>=3.6.1 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (3.6.1)
Requirement already satisfied, skipping upgrade: wheel>=0.26 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (0.32.3)
Requirement already satisfied, skipping upgrade: absl-py>=0.1.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (0.7.0)
Requirement already satisfied, skipping upgrade: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (1.0.9)
Requirement already satisfied, skipping upgrade: gast>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (0.2.2)
Requirement already satisfied, skipping upgrade: termcolor>=1.1.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (1.1.0)
Requirement already satisfied, skipping upgrade: grpcio>=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (1.18.0)
Requirement already satisfied, skipping upgrade: tensorflow-estimator<1.14.0rc0,>=1.13.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (1.13.0)
Requirement already satisfied, skipping upgrade: six>=1.10.0 in /usr/lib/python3/dist-packages (from tensorflow-gpu) (1.11.0)
Requirement already satisfied, skipping upgrade: numpy>=1.13.3 in /usr/lib/python3/dist-packages (from tensorflow-gpu) (1.13.3)
Requirement already satisfied, skipping upgrade: astor>=0.6.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (0.7.1)
Requirement already satisfied, skipping upgrade: tensorboard<1.14.0,>=1.13.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-gpu) (1.13.1)
Requirement already satisfied, skipping upgrade: h5py in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.0.6->tensorflow-gpu) (2.9.0)
Requirement already satisfied, skipping upgrade: setuptools in /usr/local/lib/python3.6/dist-packages (from protobuf>=3.6.1->tensorflow-gpu) (40.6.3)
Requirement already satisfied, skipping upgrade: mock>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow-gpu) (2.0.0)
Requirement already satisfied, skipping upgrade: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.14.0,>=1.13.0->tensorflow-gpu) (0.14.1)
Requirement already satisfied, skipping upgrade: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tensorboard<1.14.0,>=1.13.0->tensorflow-gpu) (3.0.1)
Requirement already satisfied, skipping upgrade: pbr>=0.11 in /usr/local/lib/python3.6/dist-packages (from mock>=2.0.0->tensorflow-estimator<1.14.0rc0,>=1.13.0->tensorflow-gpu) (5.1.1)
However when I am trying to import tensorflow I am getting error about libcublas.so.10.0:
user:~$ python3
Python 3.6.7 (default, Oct 22 2018, 11:32:17)
[GCC 8.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "/usr/lib/python3.6/imp.py", line 243, in load_module
return load_dynamic(name, filename, file)
File "/usr/lib/python3.6/imp.py", line 343, in load_dynamic
return _load(spec)
ImportError: libcublas.so.10.0: cannot open shared object file: No such file or directory
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.6/dist-packages/tensorflow/__init__.py", line 24, in <module>
from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/__init__.py", line 49, in <module>
from tensorflow.python import pywrap_tensorflow
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 74, in <module>
raise ImportError(msg)
ImportError: Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module>
from tensorflow.python.pywrap_tensorflow_internal import *
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module>
_pywrap_tensorflow_internal = swig_import_helper()
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper
_mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
File "/usr/lib/python3.6/imp.py", line 243, in load_module
return load_dynamic(name, filename, file)
File "/usr/lib/python3.6/imp.py", line 343, in load_dynamic
return _load(spec)
ImportError: libcublas.so.10.0: cannot open shared object file: No such file or directory
Failed to load the native TensorFlow runtime.
See https://www.tensorflow.org/install/errors
for some common reasons and solutions. Include the entire stack trace
above this error message when asking for help.
What I am missing? and How can I resolve this?
Thanks
回答1:
I downloaded cuda 10.0 from the following link CUDA 10.0
Then I installed it using the following commands:
sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda-10-0
I then installed cudnn v7.5.0 for CUDA 10.0 by going to link CUDNN download and you need to logon using an account.
and after choosing the correct version I downloaded via link CUDNN power link after that I added the include and lib files for cudnn as follows:
sudo cp -P cuda/targets/ppc64le-linux/include/cudnn.h /usr/local/cuda-10.0/include/
sudo cp -P cuda/targets/ppc64le-linux/lib/libcudnn* /usr/local/cuda-10.0/lib64/
sudo chmod a+r /usr/local/cuda-10.0/lib64/libcudnn*
After modified the .bashrc for lib and path of cuda 10.0, if you do not have it you need to add them into .bashrc
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
And after all these steps, I managed to import tensorflow in python3 successfully.
回答2:
This error occurs when the version of cuda and tensorflow installed are not compatible. I encountered a similar ImportError while running tensorflow version 1.13.0 with cuda 9. Since I had installed tensorflow on a virtual environment with pip, I just uninstalled tensorflow 1.13.0 and installed tensorflow 1.12.0 as follow;
pip uninstall tensorflow-gpu tensorflow-estimator tensorboard
pip install tensorflow-gpu==1.12.0
Everything now works.
回答3:
Change my tensorflow version solved my problem.
check this issue 1https://github.com/tensorflow/tensorflow/issues/26182)
Official tensorflow-gpu binaries (the one downloaded by pip or conda) are built with cuda 9.0, cudnn 7 since TF 1.5, and cuda 10.0, cudnn 7 since TF 1.13. These are written in the release notes. You have to use the matching version of cuda if using the official binaries.
回答4:
I had the same issue. I fixed it by adding the below command to the '.bashrc' file.
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64/
System configuration:
Ubuntu 16.04 LTS
Tensorflow GPU 2.0beta1
Cuda 10.0
cuDNN 7.6.0 for Cuda 10.0
I used conda to configure my system.
回答5:
Amin,
I'm getting the same error when I try to run imagenet tutorial from tensorflow models package -- https://github.com/tensorflow/models/tree/master/tutorials/image/imagenet
python3 classify_image.py
...
2019-07-21 22:29:58.367858: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcudart.so.10.0'; dlerror: libcudart.so.10.0: cannot open shared object file: No such file or directory
2019-07-21 22:29:58.367982: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcublas.so.10.0'; dlerror: libcublas.so.10.0: cannot open shared object file: No such file or directory
2019-07-21 22:29:58.368112: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcufft.so.10.0'; dlerror: libcufft.so.10.0: cannot open shared object file: No such file or directory
2019-07-21 22:29:58.368234: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcurand.so.10.0'; dlerror: libcurand.so.10.0: cannot open shared object file: No such file or directory
2019-07-21 22:29:58.368369: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcusolver.so.10.0'; dlerror: libcusolver.so.10.0: cannot open shared object file: No such file or directory
2019-07-21 22:29:58.368498: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Could not dlopen library 'libcusparse.so.10.0'; dlerror: libcusparse.so.10.0: cannot open shared object file: No such file or directory
2019-07-21 22:29:58.374333: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
I think there's a version incompatibility somewhere and likely tensorflow, still relies on the old version of binaries provided by cuda libraries. Going to the place where binaries are stored and creating a link that's named 10.0 but either targets 10.1 or the default version of the library, seems to solve the problem for me.
# cd /usr/lib/x86_64-linux-gnu
# ln -s libcudart.so.10.1 libcudart.so.10.0
# ln -s libcublas.so libcublas.so.10.0
# ln -s libcufft.so libcufft.so.10.0
# ln -s libcurand.so libcurand.so.10.0
# ln -s libcusolver.so libcusolver.so.10.0
# ln -s libcusparse.so libcusparse.so.10.0
Now I'm able to run tutorial successfully
2019-07-24 21:43:21.172908: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2019-07-24 21:43:21.174653: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2019-07-24 21:43:21.175826: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
2019-07-24 21:43:21.182305: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
2019-07-24 21:43:21.183970: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
2019-07-24 21:43:21.206796: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
2019-07-24 21:43:21.210685: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
2019-07-24 21:43:21.212694: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-07-24 21:43:21.213060: I tensorflow/core/platform/cpu_feature_guard.cc:142]
Your CPU supports instructions that this TensorFlow binary was not compiled to use: FMA
2019-07-24 21:43:21.238541: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3214745000 Hz
2019-07-24 21:43:21.240096: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x557e2b682ce0 executing computations on platform Host. Devices:
2019-07-24 21:43:21.240162: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): <undefined>, <undefined>
2019-07-24 21:43:21.355158: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x557e2b652000 executing computations on platform CUDA. Devices:
2019-07-24 21:43:21.355234: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GTX 1060 6GB, Compute Capability 6.1
2019-07-24 21:43:21.357074: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce GTX 1060 6GB major: 6 minor: 1 memoryClockRate(GHz): 1.7715
pciBusID: 0000:01:00.0
2019-07-24 21:43:21.357151: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2019-07-24 21:43:21.357207: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2019-07-24 21:43:21.357245: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0
2019-07-24 21:43:21.357283: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0
2019-07-24 21:43:21.357321: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0
2019-07-24 21:43:21.357358: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0
2019-07-24 21:43:21.357395: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
2019-07-24 21:43:21.360449: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-07-24 21:43:21.380616: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0
2019-07-24 21:43:21.385223: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-07-24 21:43:21.385272: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2019-07-24 21:43:21.385299: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2019-07-24 21:43:21.388647: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5250 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:01:00.0, compute capability: 6.1)
2019-07-24 21:43:32.001598: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0
2019-07-24 21:43:32.532105: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7
W0724 21:43:34.981204 140284114071872 deprecation_wrapper.py:119] From classify_image.py:85: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.
来源:https://stackoverflow.com/questions/55224016/importerror-libcublas-so-10-0-cannot-open-shared-object-file-no-such-file-or