问题
Problem Setup
The pandas Dataframe
df = pd.DataFrame({'Group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A'], 'Subgroup': ['Group 1', 'Group 1', 'Group 1', 'Group 1', 'Group 1', 'Group 1', 'Group 2', 'Group 2', 'Group 2'], 'Keyword': ['kw 1', 'kw 1', 'kw 1', 'kw 2', '+kw +2', 'kw 2', 'kw 3', 'kw 3', 'kw 3'], 'Normalized': ['kw 1', 'kw 1', 'kw 1', 'kw 2', 'kw 2', 'kw 2', 'kw 3', 'kw 3', 'kw 3'], 'Criterion Type': ['Exact', 'Phrase', 'Broad', 'Phrase', 'Broadified', 'Exact', 'Broad', 'Exact', 'Phrase'], 'Max CPC': [1.62, 1.73, 0.87, 1.70, 0.85, 1.60, 0.99, 1.58, 1.68], 'CPC Rank': [2, 1, 3, 1, 3, 2, 3, 2, 1], 'Type Rank': [1, 2, 3, 2, 3, 1, 3, 1, 2]})
This to get the columns in the right spot:
df = df[['Group', 'Subgroup', 'Keyword', 'Normalized', 'Criterion Type', 'Max CPC', 'CPC Rank', 'Type Rank']]
The goal
groupby
['Group', 'Subgroup', 'Normalized']
, then rank
the Max CPC
s. Next, I want to map the Max CPC
associated to the CPC Rank
to the Type Rank
which is determined based on Criterion Type
and my own custom rank:
{'Exact':1, 'Phrase':2, 'Broadified':3, 'Broad':4}
The result would be the New CPC
column with its appropriate Max CPC
.
回答1:
I have sorted the values inside each group and assigned the sorted values using index. Is this what you want?
df['new CPC'] = -1
parts = []
grouped = df.groupby(['Group', 'Subgroup', 'Normalized'])
for name, group in grouped:
type_rank_index = group.sort(columns='Type Rank').index
cpc_rank_index = group.sort(columns='CPC Rank').index
group.loc[type_rank_index, 'new CPC'] = group.loc[cpc_rank_index, 'Max CPC']
parts.append(group)
result = pd.concat(parts)
回答2:
import pandas as pd
import numpy as np
df = pd.DataFrame({'Group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A'], 'Subgroup': ['Group 1', 'Group 1', 'Group 1', 'Group 1', 'Group 1', 'Group 1', 'Group 2', 'Group 2', 'Group 2'], 'Keyword': ['kw 1', 'kw 1', 'kw 1', 'kw 2', '+kw +2', 'kw 2', 'kw 3', 'kw 3', 'kw 3'], 'Normalized': ['kw 1', 'kw 1', 'kw 1', 'kw 2', 'kw 2', 'kw 2', 'kw 3', 'kw 3', 'kw 3'], 'Criterion Type': ['Exact', 'Phrase', 'Broad', 'Phrase', 'Broadified', 'Exact', 'Broad', 'Exact', 'Phrase'], 'Max CPC': [1.62, 1.73, 0.87, 1.70, 0.85, 1.60, 0.99, 1.58, 1.68], 'CPC Rank': [2, 1, 3, 1, 3, 2, 3, 2, 1], 'Type Rank': [1, 2, 3, 2, 3, 1, 3, 1, 2]})
df = df[['Group', 'Subgroup', 'Keyword', 'Normalized', 'Criterion Type', 'Max CPC', 'CPC Rank', 'Type Rank']]
#Sort by custom priority based on their Criterion Type
df = df.sort(['Group', 'Subgroup', 'Normalized', 'Type Rank'])
#Reset index and drop old one
df = df.reset_index(drop=True)
print(df)
#Create df1 which is a Series of the Max CPC column in its correctly ranked order
df1 = df.sort(['Group', 'Subgroup', 'Normalized', 'CPC Rank'])['Max CPC']
#Reset index and drop old one
df1 = df1.reset_index(drop=True)
print(df1)
#Add the df1 Series to df and name the column New CPC
df['New CPC'] = df1
print(df)
This is by far the most efficient solution to this problem. The hard part was realizing that I could sort
df
by the Type Rank
so the Criterion Type
rows were ordered by their rank. This meant I wanted the highest Max CPC
to apply to the first, the second highest Max CPC
to the second, and so on.
Then all I had to do was create a Max CPC
Series
sorted by CPC Rank
.
Lastly, add this Series
to the existing df
.
回答3:
try this one
def group_rank(df):
# first of all you've to rank according to `Max CPC`
df['CPC Rank'] = df['Max CPC'].rank(ascending = False)
# create the mapping
mapping = pd.Series(data=df['Max CPC'].values , index= df['CPC Rank'].values)
# create new column according to your ranking
df['New CPC'] = df['Type Rank'].map(mapping)
return df
df.groupby(['Group', 'Subgroup', 'Normalized']).apply(group_rank)
来源:https://stackoverflow.com/questions/32411615/python-pandas-groupby-rank-then-assign-value-based-on-custom-rank