问题
I have two dataframes, main_df
:
| header_1
0 | value_1
1 | value_2
2 | value_3
3 | value_1
And a lookup dataframe lookup_df
:
| header_1 | header_2
0 | value_1 | lookup_value_1
1 | value_2 | lookup_value_2
2 | value_3 | lookup_value_3
3 | value_4 | lookup_value_4
The values in main_df
are not unique. The values in `lookup_df' are unique.
I simply want to populate a new column in main
df with the corresponding lookup_value
from lookup_df
.
Have tried various approaches including .merge
, .join
, .map
and .lookup
.
main_df = pd.merge(main_df, lookup_df, how='inner', on=['header_1'])
The outcome I am looking for is:
| header_1 | header_2
0 | value_1 | lookup_value_1
1 | value_2 | lookup_value_2
2 | value_3 | lookup_value_3
3 | value_1 | lookup_value_1
回答1:
You can use map by Series
:
main_df['header_2'] = main_df['header_1'].map(lookup_df.set_index('header_1')['header_2'])
print (main_df)
header_1 header_2
0 value_1 lookup_value_1
1 value_2 lookup_value_2
2 value_3 lookup_value_3
3 value_1 lookup_value_1
Or a bit faster is convert Series
to_dict:
main_df['header_2'] = main_df['header_1'].map(lookup_df.set_index('header_1')['header_2']
.to_dict())
print (main_df)
header_1 header_2
0 value_1 lookup_value_1
1 value_2 lookup_value_2
2 value_3 lookup_value_3
3 value_1 lookup_value_1
Timings:
#[400000 rows x 1 columns]
main_df = pd.concat([main_df]*100000).reset_index(drop=True)
In [139]: %timeit pd.merge(main_df, lookup_df, how='left', on=['header_1'])
10 loops, best of 3: 73.1 ms per loop
In [140]: %timeit main_df['header_1'].map(lookup_df.set_index('header_1')['header_2'])
10 loops, best of 3: 35.7 ms per loop
In [141]: %timeit main_df['header_1'].map(lookup_df.set_index('header_1')['header_2'].to_dict())
10 loops, best of 3: 35.1 ms per loop
EDIT:
You need unique values of column header_1
in lookup_df
, one possible solution is drop_duplicates:
print (lookup_df)
header_1 header_2
0 value_1 lookup_value_1
1 value_2 lookup_value_2
2 value_3 lookup_value_3
3 value_1 lookup_value_4
#keep first value, default parameter keep='first'
lookup_df = lookup_df.drop_duplicates(['header_1'])
print (lookup_df)
header_1 header_2
0 value_1 lookup_value_1
1 value_2 lookup_value_2
2 value_3 lookup_value_3
#keep last value
lookup_df1 = lookup_df.drop_duplicates(['header_1'], keep='last')
print (lookup_df1)
header_1 header_2
0 value_1 lookup_value_1
1 value_2 lookup_value_2
2 value_3 lookup_value_3
回答2:
You have to do a merge without the 'how' keyword. Like so:
main_df = pd.DataFrame([{'header_1': 'value_1'},{'header_1': 'value_2'},{'header_1': 'value_3'},{'header_1': 'value_1'}])
lookup_df = pd.DataFrame([{'header_1':'value_1', 'header_2':'lookup_value_1'}, {'header_1':'value_2', 'header_2':'lookup_value_2'}, {'header_1':'value_3', 'header_2':'lookup_value_3'}, {'header_1':'value_4', 'header_2':'lookup_value_4'}])
main_df = pd.merge(main_df, lookup_df, on='header_1')
The output is
header_1 header_2
0 value_1 lookup_value_1
1 value_1 lookup_value_1
2 value_2 lookup_value_2
3 value_3 lookup_value_3
来源:https://stackoverflow.com/questions/41806079/lookup-string-values-in-lookup-table-to-populate-second-dataframe