Tensorflow crashes with CUBLAS_STATUS_ALLOC_FAILED

丶灬走出姿态 提交于 2019-11-27 02:10:00

问题


I'm running tensorflow-gpu on Windows 10 using a simple MINST neural network program. When it tries to run, it encounters a CUBLAS_STATUS_ALLOC_FAILED error. A google search doesn't turn up anything.

I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:885] Found device 0 with properties:
name: GeForce GTX 970
major: 5 minor: 2 memoryClockRate (GHz) 1.253
pciBusID 0000:0f:00.0
Total memory: 4.00GiB
Free memory: 3.31GiB
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:906] DMA: 0
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:916] 0:   Y
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 970, pci bus id: 0000:0f:00.0)
E c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\cuda\cuda_blas.cc:372] failed to create cublas handle: CUBLAS_STATUS_ALLOC_FAILED
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\stream_executor\stream.cc:1390] attempting to perform BLAS operation using StreamExecutor without BLAS support
Traceback (most recent call last):
  File "C:\Users\Anonymous\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1021, in _do_call
    return fn(*args)
  File "C:\Users\Anonymous\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1003, in _run_fn
    status, run_metadata)
  File "C:\Users\Anonymous\AppData\Local\Programs\Python\Python35\lib\contextlib.py", line 66, in __exit__
    next(self.gen)
  File "C:\Users\Anonymous\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 469, in raise_exception_on_not_ok_status
    pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InternalError: Blas SGEMM launch failed : a.shape=(100, 784), b.shape=(784, 256), m=100, n=256, k=784
         [[Node: MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](_recv_Placeholder_0/_7, Variable/read)]]
         [[Node: Mean/_15 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_35_Mean", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

回答1:


The location of the "allow_growth" property of the session config seems to be different now. It's explained here: https://www.tensorflow.org/tutorials/using_gpu

So currently you'd have to set it like this:

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config, ...)



回答2:


I found this solution works

import tensorflow as tf
from keras.backend.tensorflow_backend import set_session

config = tf.ConfigProto(
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.8)
    # device_count = {'GPU': 1}
)
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
set_session(session)



回答3:


On windows, currently tensorflow does not allocate all available memory like it says in the documentation, instead you can work around this error by allowing dynamic memory growth as follows:

tf.Session(config=tf.ConfigProto(allow_growth=True))



回答4:


Tensorflow 2.0 alpha

Allowing GPU memory growth may fix this issue. For Tensorflow 2.0 alpha / nightly there are two methods you can try, to archive this.

1.)

import tensorflow as tf
tf.config.gpu.set_per_process_memory_growth()

2.)

import tensorflow as tf
tf.config.gpu.set_per_process_memory_fraction(0.4) # adjust this to the % of VRAM you 
                                                   # want to give to tensorflow.

I suggest you try both, and see if it helps. Source: https://www.tensorflow.org/alpha/guide/using_gpu




回答5:


None of these fixes worked for me, as it seems that the structure of the tensorflow libraries have changed. For Tensorflow 2.0, the only fix that worked for me was as under Limiting GPU memory growth on this page https://www.tensorflow.org/guide/gpu

For completeness and future-proofing, here's the solution from the docs - I imagine changing memory_limit may be necessary for some people - 1 GB was fine for my case.

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
  # Restrict TensorFlow to only allocate 1GB of memory on the first GPU
  try:
    tf.config.experimental.set_virtual_device_configuration(
        gpus[0],
        [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
    logical_gpus = tf.config.experimental.list_logical_devices('GPU')
    print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
  except RuntimeError as e:
    # Virtual devices must be set before GPUs have been initialized
    print(e)



回答6:


for keras:

from keras.backend.tensorflow_backend import set_session
import tensorflow as tf

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
set_session(session)


来源:https://stackoverflow.com/questions/41117740/tensorflow-crashes-with-cublas-status-alloc-failed

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!