问题
I'm using pipeline API of Apache Spark for validation of parameters. I'm building TrainValidationSplitModel like this :
Pipeline pipeline = ...
ParamMap[] paramGrid = ...
TrainValidationSplit trainValidationSplit = new TrainValidationSplit().setEstimator(pipeline).setEvaluator(new MulticlassClassificationEvaluator()).setEstimatorParamMaps(paramGrid).setTrainRatio(0.8);
TrainValidationSplitModel model = trainValidationSplit.fit(training);
My question is: how can I extract and print params of best trained model?
回答1:
Finally I did it. Spark prints this metrics after training. I had ERROR log level for spark, so I haven't seen this:
2015-10-21 12:57:33,828 [INFO org.apache.spark.ml.tuning.TrainValidationSplit]
Train validation split metrics: WrappedArray(0.7141940371838821, 0.7358721053749735)
2015-10-21 12:57:33,831 [INFO org.apache.spark.ml.tuning.TrainValidationSplit]
Best set of parameters:
{
hashingTF_79cf758f5ab1-numFeatures: 2000000,
nb_67d55ce4e1fc-smoothing: 1.0
}
2015-10-21 12:57:33,831 [INFO org.apache.spark.ml.tuning.TrainValidationSplit]
Best train validation split metric: 0.7358721053749735.
Now I've added level INFO for class TrainValidationSplit in my log4j.properties file:
log4j.logger.org.apache.spark.ml.tuning.TrainValidationSplit=INFO
log4j.additivity.org.apache.spark.ml.tuning.TrainValidationSplit=false
来源:https://stackoverflow.com/questions/32565594/how-to-print-best-model-params-in-apache-spark-pipeline