问题
I have a flying aircraft which I am following and I am also showing the path the aircraft has followed. I am drawing cylinders as a line for drawing the path. Its kind of drawing a line between 2 points. I have a cameraNode which is set to (0,200,200) initially. At that point I can see the aircraft. But when I start my flight. It goes out of the screen. I want 2 things :
- Follow just the aircraft (Path won't matter).
- Show whole path and also the aircraft.
I tried finding the min ad max x,y and z and taking average but it din't work. If you see below gif its too zoomed and aircraft has moved out of the screen
Here is how I set my camera:
- (void)setUpCamera {
SCNScene *workingScene = [self getWorkingScene];
_cameraNode = [[SCNNode alloc] init];
_cameraNode.camera = [SCNCamera camera];
_cameraNode.camera.zFar = 500;
_cameraNode.position = SCNVector3Make(0, 60, 50);
[workingScene.rootNode addChildNode:_cameraNode];
SCNNode *frontCameraNode = [SCNNode node];
frontCameraNode.position = SCNVector3Make(0, 100, 50);
frontCameraNode.camera = [SCNCamera camera];
frontCameraNode.camera.xFov = 75;
frontCameraNode.camera.zFar = 500;
[_assetActivity addChildNode:frontCameraNode]; //_assetActivity is the aircraft node.
}
Here is how I am changing camera position which is not working:
- (void)showRealTimeFlightPath {
DAL3DPoint *point = [self.aircraftLocation convertCooridnateTo3DPoint];
DAL3DPoint *previousPoint = [self.previousAircraftLocation convertCooridnateTo3DPoint];
self.minCoordinate = [self.minCoordinate findMinPoint:self.minCoordinate currentPoint:point];
self.maxCoordinate = [self.minCoordinate findMaxPoint:self.maxCoordinate currentPoint:point];
DAL3DPoint *averagePoint = [[DAL3DPoint alloc] init];
averagePoint = [averagePoint averageBetweenCoordiantes:self.minCoordinate maxPoint:self.maxCoordinate];
SCNVector3 positions[] = {
SCNVector3Make(point.x,point.y,point.z) ,
SCNVector3Make(previousPoint.x,previousPoint.y,previousPoint.z)
};
SCNScene *workingScene = [self getWorkingScene];
DALLineNode *lineNodeA = [[DALLineNode alloc] init];
[lineNodeA init:workingScene.rootNode v1:positions[0] v2:positions[1] radius:0.1 radSegementCount:6 lineColor:[UIColor greenColor]] ;
[workingScene.rootNode addChildNode:lineNodeA];
self.previousAircraftLocation = [self.aircraftLocation mutableCopy];
self.cameraNode.position = SCNVector3Make(averagePoint.x, averagePoint.y, z);
self.pointOfView = self.cameraNode;
}
Code in swift or objective c are welcomed.
Thanks!!
回答1:
The first behavior you describe would most easily be achieved by chaining a look-at constraint and a distance constraint, both targeting the aircraft.
let lookAtConstraint = SCNLookAtConstraint(target: aircraft)
let distanceConstraint = SCNDistanceConstraint(target: aircraft)
distanceConstraint.minimumDistance = 10 // set to whatever minimum distance between the camera and aircraft you'd like
distanceConstraint.maximumDistance = 10 // set to whatever maximum distance between the camera and aircraft you'd like
camera.constraints = [lookAtConstraint, distanceConstraint]
For iOS 10 and earlier, you can implement a distance constraint using SCNTransformConstraint
. Here's a basic (though slightly ugly 😛) implementation that uses linear interpolation to update the node's position.
func normalize(_ value: Float, in range: ClosedRange<Float>) -> Float {
return (value - range.lowerBound) / (range.upperBound - range.lowerBound)
}
func interpolate(from start: Float, to end: Float, alpha: Float) -> Float {
return (1 - alpha) * start + alpha * end
}
let target = airplane
let minimumDistance: Float = 10
let maximumDistance: Float = 15
let distanceConstraint = SCNTransformConstraint(inWorldSpace: false) { (node, transform) -> SCNMatrix4 in
let distance = abs(sqrt(pow(target.position.x - node.position.x, 2) + pow(target.position.y - node.position.y, 2) + pow(target.position.z - node.position.z, 2)))
let normalizedDistance: Float
switch distance {
case ...minimumDistance:
normalizedDistance = self.normalize(minimumDistance, in: 0 ... distance)
case maximumDistance...:
normalizedDistance = self.normalize(maximumDistance, in: 0 ... distance)
default:
return transform
}
node.position.x = self.interpolate(from: target.position.x, to: node.position.x, alpha: normalizedDistance)
node.position.y = self.interpolate(from: target.position.y, to: node.position.y, alpha: normalizedDistance)
node.position.z = self.interpolate(from: target.position.z, to: node.position.z, alpha: normalizedDistance)
return transform
}
The second behavior could be implemented by determining the bounding box of your aircraft and all of its path segments in the camera's local coordinate space, then updating the camera's distance from the center of that bounding box to frame all of those nodes in the viewport. frameNodes(_:)
, a convenience method that implements this functionality, was introduced in iOS 11 and is defined on SCNCameraController
. I'd recommend using it if possible, unless you want to dive into the trigonometry yourself. You could use your scene view's default camera controller or create a temporary instance, whichever suits the needs of your app.
回答2:
You need to calculate the angle of the velocity so that the camera points in the direction of the moving SCNNode.
This code will point you in the right direction.
func renderer(_ aRenderer: SCNSceneRenderer, didSimulatePhysicsAtTime time: TimeInterval) {
// get velocity angle using velocity of vehicle
var degrees = convertVectorToAngle(vector: vehicle.chassisBody.velocity)
// get rotation of current camera on X and Z axis
let eX = cameraNode.eulerAngles.x
let eZ = cameraNode.eulerAngles.z
// offset rotation on y axis by 90 degrees
// this needs work, buggy
let ninety = deg2rad(90)
// default camera Y Euler angle facing north at 0 degrees
var eY : Float = 0.0
if degrees != 0 {
eY = Float(-degrees) - Float(ninety)
}
// rotate camera direction using cameraNode.eulerAngles and direction of velocity as eY
cameraNode.eulerAngles = SCNVector3Make(eX, eY, eZ)
// put camera 25 points behind vehicle facing direction of velocity
let dir = calculateCameraDirection(cameraNode: vehicleNode)
let pos = pointInFrontOfPoint(point: vehicleNode.position, direction:dir, distance: 25)
// camera follows driver view from 25 points behind, and 10 points above vehicle
cameraNode.position = SCNVector3Make(pos.x, vehicleNode.position.y + 10, pos.z)
}
func convertVectorToAngle(vector: SCNVector3) -> CGFloat {
let degrees = atan2(vector.z, vector.x)
return CGFloat(degrees)
}
func pointInFrontOfPoint(point: SCNVector3, direction: SCNVector3, distance: Float) -> SCNVector3 {
var x = Float()
var y = Float()
var z = Float()
x = point.x + distance * direction.x
y = point.y + distance * direction.y
z = point.z + distance * direction.z
let result = SCNVector3Make(x, y, z)
return result
}
func calculateCameraDirection(cameraNode: SCNNode) -> SCNVector3 {
let x = -cameraNode.rotation.x
let y = -cameraNode.rotation.y
let z = -cameraNode.rotation.z
let w = cameraNode.rotation.w
let cameraRotationMatrix = GLKMatrix3Make(cos(w) + pow(x, 2) * (1 - cos(w)),
x * y * (1 - cos(w)) - z * sin(w),
x * z * (1 - cos(w)) + y*sin(w),
y*x*(1-cos(w)) + z*sin(w),
cos(w) + pow(y, 2) * (1 - cos(w)),
y*z*(1-cos(w)) - x*sin(w),
z*x*(1 - cos(w)) - y*sin(w),
z*y*(1 - cos(w)) + x*sin(w),
cos(w) + pow(z, 2) * ( 1 - cos(w)))
let cameraDirection = GLKMatrix3MultiplyVector3(cameraRotationMatrix, GLKVector3Make(0.0, 0.0, -1.0))
return SCNVector3FromGLKVector3(cameraDirection)
}
func deg2rad(_ number: Double) -> Double {
return number * .pi / 180
}
来源:https://stackoverflow.com/questions/45447924/camera-is-not-following-the-airplane-in-scenekit