How to merge multiple feature vectors in DataFrame?

无人久伴 提交于 2019-11-27 01:57:12

问题


Using Spark ML transformers I arrived at a DataFrame where each row looks like this:

Row(object_id, text_features_vector, color_features, type_features)

where text_features is a sparse vector of term weights, color_features is a small 20-element (one-hot-encoder) dense vector of colors, and type_features is also a one-hot-encoder dense vector of types.

What would a good approach be (using Spark's facilities) to merge these features in one single, large array, so that I measure things like the cosine distance between any two objects?


回答1:


You can use VectorAssembler:

import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.sql.DataFrame

val df: DataFrame = ???

val assembler = new VectorAssembler()
  .setInputCols(Array("text_features", "color_features", "type_features"))
  .setOutputCol("features")

val transformed = assembler.transform(df)

For PySpark example see: Encode and assemble multiple features in PySpark



来源:https://stackoverflow.com/questions/33273712/how-to-merge-multiple-feature-vectors-in-dataframe

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!