二分查找(上):如何用最省内存的方式实现快速查找功能?
1.无处不在的二分思想
二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
2.O(logn) 惊人的查找速度
二分查找是目前为止遇到的第一个时间复杂度为 O(logn) 的算法。堆、二叉树的操作等等,它们的时间复杂度也是 O(logn)。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。
logn 是一个非常“恐怖”的数量级,即便 n 非常非常大,对应的 logn 也很小。比如 n 等于 2 的 32 次方,这个数很大了吧?大约是 42 亿。也就是说,如果我们在 42 亿个数据中用二分查找一个数据,最多需要比较 32 次。
3.二分查找的递归与非递归实现
最简单的情况就是有序数组中不存在重复元素:
- 非递归实现
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (a[mid] == value) {
return mid;
} else if (a[mid] < value) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return -1;
}
- 循环退出条件
注意是 low<=high,而不是 low<high。- mid 的取值
实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。- low 和 high 的更新
low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3] 不等于 value,就会导致一直循环不退出
2.递归实现
// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
return bsearchInternally(a, 0, n - 1, val);
}
private int bsearchInternally(int[] a, int low, int high, int value) {
if (low > high) return -1;
int mid = low + ((high - low) >> 1);
if (a[mid] == value) {
return mid;
} else if (a[mid] < value) {
return bsearchInternally(a, mid+1, high, value);
} else {
return bsearchInternally(a, low, mid-1, value);
}
}
4.二分查找应用场景的局限性
1 二分查找依赖的是顺序表结构,简单点说就是数组;
2 二分查找针对的是有序数据;
3 数据量太小不适合二分查
4 数据量太大也不适合二分查找
5.总结
二分查找的核心思想理解起来非常简单,有点类似分治思想。即每次都通过跟区间中的中间元素对比,将待查找的区间缩小为一半,直到找到要查找的元素,或者区间被缩小为 0。但是二分查找的代码实现比较容易写错。你需要着重掌握它的三个容易出错的地方:循环退出条件、mid 的取值,low 和 high 的更新。
二分查找虽然性能比较优秀,但应用场景也比较有限。底层必须依赖数组,并且还要求数据是有序的。对于较小规模的数据查找,我们直接使用顺序遍历就可以了,二分查找的优势并不明显。二分查找更适合处理静态数据,也就是没有频繁的数据插入、删除操作。
来源:CSDN
作者:qq_41286360
链接:https://blog.csdn.net/qq_41286360/article/details/103473491