Find the similarity metric between two strings

青春壹個敷衍的年華 提交于 2019-11-26 01:37:12

问题


How do I get the probability of a string being similar to another string in Python?

I want to get a decimal value like 0.9 (meaning 90%) etc. Preferably with standard Python and library.

e.g.

similar(\"Apple\",\"Appel\") #would have a high prob.

similar(\"Apple\",\"Mango\") #would have a lower prob.

回答1:


There is a built in.

from difflib import SequenceMatcher

def similar(a, b):
    return SequenceMatcher(None, a, b).ratio()

Using it:

>>> similar("Apple","Appel")
0.8
>>> similar("Apple","Mango")
0.0



回答2:


I think maybe you are looking for an algorithm describing the distance between strings. Here are some you may refer to:

  1. Hamming distance
  2. Levenshtein distance
  3. Damerau–Levenshtein distance
  4. Jaro–Winkler distance



回答3:


Solution #1: Python builtin

use SequenceMatcher from difflib

pros: native python library, no need extra package.
cons: too limited, there are so many other good algorithms for string similarity out there.

example :
>>> from difflib import SequenceMatcher
>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75

Solution #2: jellyfish library

its a very good library with good coverage and few issues. it supports:
- Levenshtein Distance
- Damerau-Levenshtein Distance
- Jaro Distance
- Jaro-Winkler Distance
- Match Rating Approach Comparison
- Hamming Distance

pros: easy to use, gamut of supported algorithms, tested.
cons: not native library.

example:

>>> import jellyfish
>>> jellyfish.levenshtein_distance(u'jellyfish', u'smellyfish')
2
>>> jellyfish.jaro_distance(u'jellyfish', u'smellyfish')
0.89629629629629637
>>> jellyfish.damerau_levenshtein_distance(u'jellyfish', u'jellyfihs')
1



回答4:


Fuzzy Wuzzy is a package that implements Levenshtein distance in python, with some helper functions to help in certain situations where you may want two distinct strings to be considered identical. For example:

>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    100



回答5:


You can create a function like:

def similar(w1, w2):
    w1 = w1 + ' ' * (len(w2) - len(w1))
    w2 = w2 + ' ' * (len(w1) - len(w2))
    return sum(1 if i == j else 0 for i, j in zip(w1, w2)) / float(len(w1))



回答6:


Package distance includes Levenshtein distance:

import distance
distance.levenshtein("lenvestein", "levenshtein")
# 3



回答7:


The builtin SequenceMatcher is very slow on large input, here's how it can be done with diff-match-patch:

from diff_match_patch import diff_match_patch

def compute_similarity_and_diff(text1, text2):
    dmp = diff_match_patch()
    dmp.Diff_Timeout = 0.0
    diff = dmp.diff_main(text1, text2, False)

    # similarity
    common_text = sum([len(txt) for op, txt in diff if op == 0])
    text_length = max(len(text1), len(text2))
    sim = common_text / text_length

    return sim, diff


来源:https://stackoverflow.com/questions/17388213/find-the-similarity-metric-between-two-strings

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!