红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子简单路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡。
红黑树是满足下面红黑性质的二叉搜索树:
- 每个节点,不是红色就是黑色的;
- 根节点是黑色的;
- 如果一个节点是红色的,则它的两个子节点是黑色的;
- 对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点;
- 每个叶子节点都是黑色的(这里的叶子节点是指的空节点)
思考:为什么满足上面的颜色约束性质,红黑树能保证最长路径不超过最短路径的两倍?
如图:所能增加的红节点数最多和黑节点数目一样多,故红黑树能保证最长路径不超过最短路径的两倍。
一、判断是否是红黑树:
//判断是否是红黑树
bool isRBTree()
{
int BlackNodeNum = 0;
int curBlackNodeNum = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
{
BlackNodeNum++;
}
cur = cur->_left;
}
return _isRBTree(_root, BlackNodeNum, curBlackNodeNum);
}
bool _isRBTree(Node* root, int BlackNodeNum, int curBlackNodeNum)
{
if (root == NULL)
{
return true;
}
if (root->_col == BLACK)
{
curBlackNodeNum++;
}
if (BlackNodeNum == curBlackNodeNum)
{
if (root->_parent == NULL)
{
return true;
}
else if (root->_col == RED && root->_col == root->_parent->_col)
{
return false;
}
else
{
return true;
}
}
return _isRBTree(root->_left, BlackNodeNum, curBlackNodeNum) && _isRBTree(root->_right, BlackNodeNum, curBlackNodeNum);
}
二、红黑树的中序遍历:
//中序遍历
void InOrder()
{
_InOrder(_root);
}
void _InOrder(Node* root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
void _InOrder(Node* root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
三、红黑树的删除:
//删除
bool remove(const K& key){
Node *cur = NULL;
Node *parent = NULL;
cur = _root;
while(cur != NULL){
if(key < cur->_key) cur = cur->_left;
if(key > cur->_key) cur = cur->_right;
if(key == cur->_key){
break;
}
}
if(cur == NULL) return false;
Node *instead = NULL;
instead = cur;
if(instead->_left != NULL){
instead = instead->_left;
while(instead != NULL){
parent = instead;
instead = instead->_right;
}
cur->_key = parent->_key;
cur->_value = parent->_value;
parent->_parent->_right = NULL;
free(parent);
}
else if(instead->_right != NULL){
instead = instead->_right;
while(instead != NULL){
parent = instead;
instead = instead->_left;
}
cur->_key = parent->_key;
cur->_value = parent->_value;
parent->_parent->_left = NULL;
free(parent);
}
else if(instead->_left == NULL && instead->_right == NULL){
Node *gradfather = NULL;
gradfather = instead->_parent;
if(gradfather->_key > instead->_key) gradfather->_left = NULL;
else if(gradfather->_key < instead->_key) gradfather->_right = NULL;
free(instead);
}
}
四、左单旋
//左单旋
void RotateL(Node*& parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
subR->_parent = parent->_parent;
parent->_parent = subR;
parent = subR;
if (parent->_parent == NULL)
{
_root = parent;
}
else if (parent->_parent->_key > parent->_key)
{
parent->_parent->_left = parent;
}
else if ( parent->_parent->_key<parent->_key )
{
parent->_parent->_right = parent;
}
}
五、右单旋
//右单旋
void RotateR(Node*& parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
subL->_parent = parent->_parent;
parent->_parent = subL;
parent = subL;
if (parent->_parent == NULL)
{
_root = parent;
}
else if (parent->_parent->_key > parent->_key)
{
parent->_parent->_left = parent;
}
else if (parent->_parent->_key < parent->_key)
{
parent->_parent->_right = parent;
}
}
六、插入的三种情况
ps:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
1.第一种情况
cur为红,p为红,g为黑,u存在且为红,则将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
2.第二种情况
cur为红,p为红,g为黑,u不存在/u为黑
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转,p、g变色–p变黑,g变红
3.第三种情况
cur为红,p为红,g为黑,u不存在/u为黑
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,则转换成了情况2
上面已经把每种情况基本列出来了,其他相反的情况类似,反过来写一下就行了,具体详细过程参考代码。
//红黑树的插入操作
bool Insert(const K& key, const V& value)
{
if (_root == NULL)
{
_root = new Node(key, value);
_root->_col = BLACK;
return true;
}
Node* parent = NULL;
Node* cur = _root;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
//插入位置
if (parent->_key >key)
{
cur = new Node(key, value);
parent->_left = cur;
cur->_parent = parent;
}
else if (parent->_key < key)
{
cur = new Node(key, value);
parent->_right = cur;
cur->_parent = parent;
}
//插入以后,进行调整
while (cur != _root && parent->_col == RED)
{
Node* grandfather = parent->_parent;
Node* uncle = NULL;
//左边的情况
if (parent == grandfather->_left)
{
//情况一
uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
//1. 不需要旋转
if (cur == parent->_left)
{
grandfather->_col = RED;
parent->_col = BLACK;
uncle->_col = BLACK;
cur = grandfather;
parent = cur->_parent;
}
//2.需要旋转
else if (cur == parent->_right)
{
RotateL(parent);
grandfather->_col = RED;
parent->_col = BLACK;
uncle->_col = BLACK;
cur = grandfather;
parent = cur->_parent;
}
}
//情况二,三
else if (uncle == NULL || (uncle && uncle->_col == BLACK))
{
if (cur == parent->_right)
{
RotateL(parent);
}
parent->_col = BLACK;
grandfather->_col = RED;
RotateR(grandfather);
break;
}
}
//右边的情况
else if (parent == grandfather->_right)
{
//情况一
uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
//1.不需要旋转
if (cur == parent->_right)
{
uncle->_col = BLACK;
grandfather->_col = RED;
parent->_col = BLACK;
cur = grandfather;
parent = cur->_parent;
}
//2.需要旋转
else if (cur == parent->_left)
{
uncle->_col = BLACK;
grandfather->_col = RED;
parent->_col = BLACK;
RotateR(parent);
cur = grandfather;
parent = cur->_parent;
}
}
//情况二,三
else if (uncle == NULL || (uncle && uncle->_col == BLACK))
{
if (cur == parent->_left)
{
RotateR(parent);
}
parent->_col = BLACK;
grandfather->_col = RED;
RotateL(grandfather);
break;
}
}
}
_root->_col = BLACK;
return true;
}
红黑树和AVL树的比较:
红黑树和AVL树都是高效的平衡二叉树,增删查改的时间复杂度都是O(lg(N)),红黑树的不追求完全平衡,保证最长路径不超过最短路径的2倍,相对而言,降低了旋转的要求,所以性能会优于AVL树,所以实际运用中红黑树更多。
完整代码及测试用例:
#ifndef __RBTree_h__
#define __RBTree_h__
#include<iostream>
using namespace std;
enum colour
{
RED,
BLACK,
};
template<class K, class V>
struct RBTreeNode
{
int _col;
K _key;
V _value;
long long _value_cot;
long long _sum_cot;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
RBTreeNode(const K& key, const V& value):
_col(RED),
_key(key),
_value(value),
_value_cot(1),
_sum_cot(0),
_left(NULL),
_right(NULL),
_parent(NULL)
{}
};
template<class K, class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
RBTree()
:_root(NULL)
{}
//红黑树的插入操作
bool Insert(const K& key, const V& value)
{
if (_root == NULL)
{
_root = new Node(key, value);
_root->_col = BLACK;
return true;
}
Node* parent = NULL;
Node* cur = _root;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
cur->_value_cot++;
return true;
}
}
//插入位置
if (parent->_key >key)
{
cur = new Node(key, value);
parent->_left = cur;
cur->_parent = parent;
}
else if (parent->_key < key)
{
cur = new Node(key, value);
parent->_right = cur;
cur->_parent = parent;
}
//插入以后,进行调整
while (cur != _root && parent->_col == RED)
{
Node* grandfather = parent->_parent;
Node* uncle = NULL;
//左边的情况
if (parent == grandfather->_left)
{
//情况一
uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
//1. 不需要旋转
if (cur == parent->_left)
{
grandfather->_col = RED;
parent->_col = BLACK;
uncle->_col = BLACK;
cur = grandfather;
parent = cur->_parent;
}
//2.需要旋转
else if (cur == parent->_right)
{
RotateL(parent);
grandfather->_col = RED;
parent->_col = BLACK;
uncle->_col = BLACK;
cur = grandfather;
parent = cur->_parent;
}
}
//情况二,三
else if (uncle == NULL || (uncle && uncle->_col == BLACK))
{
if (cur == parent->_right)
{
RotateL(parent);
}
parent->_col = BLACK;
grandfather->_col = RED;
RotateR(grandfather);
break;
}
}
//右边的情况
else if (parent == grandfather->_right)
{
//情况一
uncle = grandfather->_left;
if (uncle && uncle->_col == RED)
{
//1.不需要旋转
if (cur == parent->_right)
{
uncle->_col = BLACK;
grandfather->_col = RED;
parent->_col = BLACK;
cur = grandfather;
parent = cur->_parent;
}
//2.需要旋转
else if (cur == parent->_left)
{
uncle->_col = BLACK;
grandfather->_col = RED;
parent->_col = BLACK;
RotateR(parent);
cur = grandfather;
parent = cur->_parent;
}
}
//情况二,三
else if (uncle == NULL || (uncle && uncle->_col == BLACK))
{
if (cur == parent->_left)
{
RotateR(parent);
}
parent->_col = BLACK;
grandfather->_col = RED;
RotateL(grandfather);
break;
}
}
}
_root->_col = BLACK;
return true;
}
//删除
bool remove(const K& key){
Node *cur = NULL;
Node *parent = NULL;
cur = _root;
while(cur != NULL){
if(key < cur->_key) cur = cur->_left;
if(key > cur->_key) cur = cur->_right;
if(key == cur->_key){
break;
}
}
if(cur == NULL) return false;
Node *instead = NULL;
instead = cur;
if(instead->_left != NULL){
instead = instead->_left;
while(instead != NULL){
parent = instead;
instead = instead->_right;
}
cur->_key = parent->_key;
cur->_value = parent->_value;
parent->_parent->_right = NULL;
free(parent);
}
else if(instead->_right != NULL){
instead = instead->_right;
while(instead != NULL){
parent = instead;
instead = instead->_left;
}
cur->_key = parent->_key;
cur->_value = parent->_value;
parent->_parent->_left = NULL;
free(parent);
}
else if(instead->_left == NULL && instead->_right == NULL){
Node *gradfather = NULL;
gradfather = instead->_parent;
if(gradfather->_key > instead->_key) gradfather->_left = NULL;
else if(gradfather->_key < instead->_key) gradfather->_right = NULL;
free(instead);
}
}
//查询第 k 大
K query(long long k){
_updata_value_cot(_root);
if(k < _root->_sum_cot) return false;
Node *cur = NULL;
cur = _root;
long long cur_left_sum = 0;
while(cur != NULL){
if(cur->_left == NULL) cur_left_sum = 0;
else cur_left_sum = cur->_left->_sum_cot;
if(k == cur_left_sum + 1) return cur->_key;
else if(k < cur_left_sum + 1){
cur = cur->left;
}
else if(k > cur_left_sum + 1){
cur = cur->_right;
k -= cur_left_sum + 1;
}
}
}
//中序遍历
void InOrder()
{
_InOrder(_root);
}
protected:
void _InOrder(Node* root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
for(int i = 0; i < root->_value_cot; i++)
cout << root->_key << " ";
_InOrder(root->_right);
}
//左单旋
void RotateL(Node*& parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
subR->_parent = parent->_parent;
parent->_parent = subR;
parent = subR;
if (parent->_parent == NULL)
{
_root = parent;
}
else if (parent->_parent->_key > parent->_key)
{
parent->_parent->_left = parent;
}
else if ( parent->_parent->_key<parent->_key )
{
parent->_parent->_right = parent;
}
}
//右单旋
void RotateR(Node*& parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
subL->_parent = parent->_parent;
parent->_parent = subL;
parent = subL;
if (parent->_parent == NULL)
{
_root = parent;
}
else if (parent->_parent->_key > parent->_key)
{
parent->_parent->_left = parent;
}
else if (parent->_parent->_key < parent->_key)
{
parent->_parent->_right = parent;
}
}
long long updata_value_cot(Node *root){
if(root == NULL) return 0;
root->_sum_cot = 1;
root->_sum_cot += updata_value_cot(root->_left) + updata_value_cot(root->_right);
}
protected:
Node* _root;
};
#endif /*__RBTree_h__*/
#include<bits/stdc++.h>
#include "RBTree.h"
void TestRBtree()
{
RBTree<int, int>RBT;
int n;
cin>>n;
for (int i = 0; i < n; i++)
{
RBT.Insert(rand(), i);
}
RBT.InOrder();
cout << endl;
cin>>n;
RBT.remove(n);
RBT.InOrder();
cout << endl;
}
int main()
{
TestRBtree();
system("pause");
return 0;
}
来源:CSDN
作者:多行不译必自闭
链接:https://blog.csdn.net/dajiangyou123456/article/details/103466529