问题
I am combined two data-frames that have some common columns, however there are some different columns. I would like to apply Singular Value Decomposition (SVD) on the combined data-frame. However, filling NaN values will affect the results, even filling the data with zeros will be wrong in my case since there are some columns have zero values. Here's an example. Is there any ways to address this issue ?.
>>> df1 = pd.DataFrame(np.random.rand(6, 4), columns=['A', 'B', 'C', 'D'])
>>> df1
A B C D
0 0.763144 0.752176 0.601228 0.290276
1 0.632144 0.202513 0.111766 0.317838
2 0.494587 0.318276 0.951354 0.051253
3 0.184826 0.429469 0.280297 0.014895
4 0.236955 0.560095 0.357246 0.302688
5 0.729145 0.293810 0.525223 0.744513
>>> df2 = pd.DataFrame(np.random.rand(6, 4), columns=['A', 'B', 'C', 'E'])
>>> df2
A B C E
0 0.969758 0.650887 0.821926 0.884600
1 0.657851 0.158992 0.731678 0.841507
2 0.923716 0.524547 0.783581 0.268123
3 0.935014 0.219135 0.152794 0.433324
4 0.327104 0.581433 0.474131 0.521481
5 0.366469 0.709115 0.462106 0.416601
>>> df3 = pd.concat([df1,df2], axis=0)
>>> df3
A B C D E
0 0.763144 0.752176 0.601228 0.290276 NaN
1 0.632144 0.202513 0.111766 0.317838 NaN
2 0.494587 0.318276 0.951354 0.051253 NaN
3 0.184826 0.429469 0.280297 0.014895 NaN
4 0.236955 0.560095 0.357246 0.302688 NaN
5 0.729145 0.293810 0.525223 0.744513 NaN
0 0.969758 0.650887 0.821926 NaN 0.884600
1 0.657851 0.158992 0.731678 NaN 0.841507
2 0.923716 0.524547 0.783581 NaN 0.268123
3 0.935014 0.219135 0.152794 NaN 0.433324
4 0.327104 0.581433 0.474131 NaN 0.521481
5 0.366469 0.709115 0.462106 NaN 0.416601
>>> U, s, V = np.linalg.svd(df3.values, full_matrices=True)
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/numpy-1.11.0b3-py3.4-macosx-10.6-intel.egg/numpy/linalg/linalg.py", line 1359, in svd
u, s, vt = gufunc(a, signature=signature, extobj=extobj)
File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/numpy-1.11.0b3-py3.4-macosx-10.6-intel.egg/numpy/linalg/linalg.py", line 99, in _raise_linalgerror_svd_nonconvergence
raise LinAlgError("SVD did not converge")
numpy.linalg.linalg.LinAlgError: SVD did not converge
Note: I can't apply interpolation because i want to preserve that some records don't have some columns information, but other records have
回答1:
It's possible to approximate the SVD of a matrix with missing values using an iterative procedure:
- Fill in the missing values with a rough approximation (e.g. replace them with the column means)
- Perform SVD on the filled-in matrix
- Reconstruct the data matrix from the SVD in order to get a better approximation of the missing values
- Repeat steps 2-3 until convergence
This is a form of expectation maximization (EM) algorithm, where the E step updates the estimates of the missing values from the SVD, and the M step computes the SVD on the updated estimate of the data matrix (see Section 1.3 here for more details).
import numpy as np
from scipy.sparse.linalg import svds
from functools import partial
def emsvd(Y, k=None, tol=1E-3, maxiter=None):
"""
Approximate SVD on data with missing values via expectation-maximization
Inputs:
-----------
Y: (nobs, ndim) data matrix, missing values denoted by NaN/Inf
k: number of singular values/vectors to find (default: k=ndim)
tol: convergence tolerance on change in trace norm
maxiter: maximum number of EM steps to perform (default: no limit)
Returns:
-----------
Y_hat: (nobs, ndim) reconstructed data matrix
mu_hat: (ndim,) estimated column means for reconstructed data
U, s, Vt: singular values and vectors (see np.linalg.svd and
scipy.sparse.linalg.svds for details)
"""
if k is None:
svdmethod = partial(np.linalg.svd, full_matrices=False)
else:
svdmethod = partial(svds, k=k)
if maxiter is None:
maxiter = np.inf
# initialize the missing values to their respective column means
mu_hat = np.nanmean(Y, axis=0, keepdims=1)
valid = np.isfinite(Y)
Y_hat = np.where(valid, Y, mu_hat)
halt = False
ii = 1
v_prev = 0
while not halt:
# SVD on filled-in data
U, s, Vt = svdmethod(Y_hat - mu_hat)
# impute missing values
Y_hat[~valid] = (U.dot(np.diag(s)).dot(Vt) + mu_hat)[~valid]
# update bias parameter
mu_hat = Y_hat.mean(axis=0, keepdims=1)
# test convergence using relative change in trace norm
v = s.sum()
if ii >= maxiter or ((v - v_prev) / v_prev) < tol:
halt = True
ii += 1
v_prev = v
return Y_hat, mu_hat, U, s, Vt
来源:https://stackoverflow.com/questions/35577553/how-to-fill-nan-values-in-numeric-array-to-apply-svd