问题
I'm using tf.data.Dataset in data processing and I want to do apply some python code with tf.py_func.
BTW, I found that in tf.py_func, I cannot return a dictionary. Is there any way to do it or workaround?
I have code which looks like below
def map_func(images, labels):
"""mapping python function"""
# do something
# cannot be expressed as a tensor graph
return {
'images': images,
'labels': labels,
'new_key': new_value}
def tf_py_func(images, labels):
return tf.py_func(map_func, [images, labels], [tf.uint8, tf.string], name='blah')
return dataset.map(tf_py_func)
===========================================================================
It's been a while and I forgot I asked this question. I solved it other way around and it was so easy that I felt I was almost a stupid. The problem was:
- tf.py_func cannot return dictionary.
- dataset.map can return dictionary.
And the answer is: map twice.
def map_func(images, labels):
"""mapping python function"""
# do something
# cannot be expressed as a tensor graph
return processed_images, processed_labels
def tf_py_func(images, labels):
return tf.py_func(map_func, [images, labels], [tf.uint8, tf.string], name='blah')
def _to_dict(images, labels):
return { 'images': images, 'labels': labels }
return dataset.map(tf_py_func).map(_to_dict)
回答1:
You could turn the dictionary into a string which you return and then split into a dictionary.
This could look something like this:
return (images + " " + labels + " " + new value)
and then in your other function:
l = map_func(image, label).split(" ")
d['images'] = l[0]
d[
...
回答2:
I have struggled with this problem too (I wanted to pre-process textual data using non-TF functions yet keep everything under the umbrella of Tensorflow's Dataset objects). In fact, there is no need for a double-map()
workaround; one has to only embed the Python function while processing each example.
Here's the full example code; tested on colab as well (the first two lines are there for installing dependencies).
!pip install tensorflow-gpu==2.0.0b1
!pip install tensorflow-datasets==1.0.2
from typing import Dict
import tensorflow as tf
import tensorflow_datasets as tfds
# Get a textual dataset using the 'tensorflow_datasets' library
dataset_builder = tfds.text.IMDBReviews()
dataset_builder.download_and_prepare()
# Do not randomly shuffle examples for demonstration purposes
ds = dataset_builder.as_dataset(shuffle_files=False)
training_ds = ds[tfds.Split.TRAIN]
print(training_ds)
# <_OptionsDataset shapes: {text: (), label: ()}, types: {text: tf.string,
# label: tf.int64}>
# Print the first training example
for example in training_ds.take(1):
print(example['text'])
# tf.Tensor(b"As a lifelong fan of Dickens, I have ... realised.",
# shape=(), dtype=string)
# some global configuration or object which we want to access in the
# processing function
we_want_upper_case = True
def process_string(t: tf.Tensor) -> str:
# This function must have been called as tf.py_function which means
# it's always eagerly executed and we can access the .numpy() content
string_content = t.numpy().decode('utf-8')
# Now we can do what we want in Python, i.e. upper-case or lower-case
# depending on the external parameter.
# Note that 'we_want_upper_case' is a variable defined in the outer scope
# of the function! We cannot pass non-Tensor objects as parameters here.
if we_want_upper_case:
return string_content.upper()
else:
return string_content.lower()
def process_example(example: Dict[str, tf.Tensor]) -> Dict[str, tf.Tensor]:
# I'm using typing (Dict, etc.) just for clarity, it's not necessary
result = {}
# First, simply copy all the tensor values
for key in example:
result[key] = tf.identity(example[key])
# Now let's process the 'text' Tensor.
# Call the 'process_string' function as 'tf.py_function'. Make sure the
# output type matches the 'Tout' parameter (string and tf.string).
# The inputs must be in a list: here we pass the string-typed Tensor 'text'.
result['text'] = tf.py_function(func=process_string,
inp=[example['text']],
Tout=tf.string)
return result
# We can call the 'map' function which consumes and produces dictionaries
training_ds = training_ds.map(lambda x: process_example(x))
for example in training_ds.take(1):
print(example['text'])
# tf.Tensor(b"AS A LIFELONG FAN OF DICKENS, I HAVE ... REALISED.",
# shape=(), dtype=string)
来源:https://stackoverflow.com/questions/55411666/is-there-a-way-to-pass-dictionary-in-tf-data-dataset-w-tf-py-func