internal variables in BasicRNNCell

对着背影说爱祢 提交于 2019-12-08 07:35:26

问题


I have the following example code to test BasicRNNCell. I'd like to get its internal matrix so that I can calculate the values of output_res, newstate_res using my own code to make sure that I can reproduce the values of output_res, newstate_res.

In tensorflow source code, it says output = new_state = act(W * input + U * state + B). Does anybody know how I can get W and U? (I tried to access cell._kernel, but it is not available.)

$ cat ./main.py
#!/usr/bin/env python
# vim: set noexpandtab tabstop=2 shiftwidth=2 softtabstop=-1 fileencoding=utf-8:

import tensorflow as tf
import numpy as np

batch_size = 4
vector_size = 3

inputs = tf.placeholder(
        tf.float32
        , [batch_size, vector_size]
        )

num_units = 2
state = tf.zeros([batch_size, num_units], tf.float32)

cell = tf.contrib.rnn.BasicRNNCell(num_units=num_units)
output, newstate = cell(inputs = inputs, state = state)

X = np.zeros([batch_size, vector_size])
#X = np.ones([batch_size, vector_size])
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    output_res, newstate_res = sess.run([output, newstate], feed_dict = {inputs: X})
    print(output_res)
    print(newstate_res)
sess.close()

$ ./main.py
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]

回答1:


Short answer: You recognize you're after cell._kernel. Here's some code to get kernel (and bias) using the variables property, which is in most TensorFlow RNNs:

import tensorflow as tf
import numpy as np

batch_size = 4
vector_size = 3
inputs = tf.placeholder(tf.float32, [batch_size, vector_size])

num_units = 2
state = tf.zeros([batch_size, num_units], tf.float32)

cell = tf.contrib.rnn.BasicRNNCell(num_units=num_units)
output, newstate = cell(inputs=inputs, state=state)

print("Output of cell.variables is a list of Tensors:")
print(cell.variables)
kernel, bias = cell.variables

X = np.zeros([batch_size, vector_size])
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    output_, newstate_, k_, b_ = sess.run(
        [output, newstate, kernel, bias], feed_dict = {inputs: X})
    print("Output:")
    print(output_)
    print("New State == Output:")
    print(newstate_)
    print("\nKernel:")
    print(k_)
    print("\nBias:")
    print(b_)

That outputs

Output of cell.variables is a list of Tensors:
[<tf.Variable 'basic_rnn_cell/kernel:0' shape=(5, 2) dtype=float32_ref>, 
<tf.Variable 'basic_rnn_cell/bias:0' shape=(2,) dtype=float32_ref>]
Output:
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]
New State == Output:
[[ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]
 [ 0.  0.]]

Kernel:
[[ 0.41417515 -0.64997244]
 [-0.40868729 -0.90995187]
 [ 0.62134564 -0.88962835]
 [-0.35878009 -0.25680023]
 [ 0.35606658 -0.83596271]]

Bias:
[ 0.  0.]

Long answer: You also ask about how to get W and U. Let me copy the implementation of call and discuss where W and U are.

def call(self, inputs, state):
     """Most basic RNN: output = new_state = act(W * input + U * state + B)."""

    gate_inputs = math_ops.matmul(
        array_ops.concat([inputs, state], 1), self._kernel)
    gate_inputs = nn_ops.bias_add(gate_inputs, self._bias)
    output = self._activation(gate_inputs)
    return output, output

Doesn't look like there's a W and a U, but they are there. Essentially, the first vector_size rows of the kernel are W and the next num_units rows of the kernel are U. Maybe it's helpful to see the element-wise math in LaTeX:

I'm using m to be a generic batch index, v as vector_size, n as num_units, and b as batch_size. Also [ ; ] denotes concatenation. Since TensorFlow is batch-major, implementations usually use right-multiply matrices.

And since this is a very basic RNN, output == new_state. The "history" for the next iteration is simply the output of the current iteration.



来源:https://stackoverflow.com/questions/47965256/internal-variables-in-basicrnncell

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!