CUDA - Confusion about the Visual Profiler results of “branch” and “divergent branch” (2)

给你一囗甜甜゛ 提交于 2019-12-08 07:02:37

问题


I use NVIDIA Visual Profiler to analyze my code. The test kernels are:

//////////////////////////////////////////////////////////////// Group 1
static __global__ void gpu_test_divergency_0(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
static __global__ void gpu_test_divergency_1(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid == 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
static __global__ void gpu_test_divergency_2(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid >= 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
static __global__ void gpu_test_divergency_3(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid > 0)
    {
         a[tid] = tid;
    }
    else
    {
         b[tid] = tid;
    }
}
//////////////////////////////////////////////////////////////// Group 2
static __global__ void gpu_test_divergency_4(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
static __global__ void gpu_test_divergency_5(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid == 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
static __global__ void gpu_test_divergency_6(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid >= 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
static __global__ void gpu_test_divergency_7(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid > 0)
    {
         a[tid] = tid + 1;
    }
    else
    {
         b[tid] = tid + 2;
    }
}
//////////////////////////////////////////////////////////////// Group 3
static __global__ void gpu_test_divergency_8(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}
static __global__ void gpu_test_divergency_9(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid == 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}
static __global__ void gpu_test_divergency_10(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid >= 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}
static __global__ void gpu_test_divergency_11(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid > 0)
    {
         a[tid] = tid + 1.0;
    }
    else
    {
         b[tid] = tid + 2.0;
    }
}

When I launched the test kernels with <<< 1, 32 >>>, I got the results from profiler like this:

gpu_test_divergency_0 :  Branch Efficiency = 100% branch = 1 divergent branch = 0
gpu_test_divergency_1 :  Branch Efficiency = 100% branch = 1 divergent branch = 0
gpu_test_divergency_2 :  Branch Efficiency = 100% branch = 1 divergent branch = 0
gpu_test_divergency_3 :  Branch Efficiency = 100% branch = 1 divergent branch = 0

gpu_test_divergency_4 :  Branch Efficiency = 100% branch = 3 divergent branch = 0
gpu_test_divergency_5 :  Branch Efficiency = 100% branch = 3 divergent branch = 0
gpu_test_divergency_6 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_7 :  Branch Efficiency = 100% branch = 3 divergent branch = 0

gpu_test_divergency_8 :  Branch Efficiency = 100% branch = 3 divergent branch = 0
gpu_test_divergency_9 :  Branch Efficiency = 75%  branch = 4 divergent branch = 1
gpu_test_divergency_10 : Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_11 : Branch Efficiency = 75%  branch = 4 divergent branch = 1

And when I launched the test kernels with <<< 1, 64 >>>, I got the results from profiler like this:

gpu_test_divergency_0 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_1 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_2 :  Branch Efficiency = 100% branch = 2 divergent branch = 0
gpu_test_divergency_3 :  Branch Efficiency = 100% branch = 2 divergent branch = 0

gpu_test_divergency_4 :  Branch Efficiency = 100% branch = 6 divergent branch = 0
gpu_test_divergency_5 :  Branch Efficiency = 100% branch = 6 divergent branch = 0
gpu_test_divergency_6 :  Branch Efficiency = 100% branch = 4 divergent branch = 0
gpu_test_divergency_7 :  Branch Efficiency = 100% branch = 5 divergent branch = 0

gpu_test_divergency_8 :  Branch Efficiency = 100%  branch = 6 divergent branch = 0
gpu_test_divergency_9 :  Branch Efficiency = 85.7% branch = 7 divergent branch = 1
gpu_test_divergency_10 : Branch Efficiency = 100%  branch = 4 divergent branch = 0
gpu_test_divergency_11 : Branch Efficiency = 83.3% branch = 6 divergent branch = 1

I use "GeForce GTX 570" with the CUDA Capability of 2.0 and NVIDIA Visual Profiler v4.2 on Linux. According to the documents:

"branch" - "Number of branches taken by threads executing a kernel. This counter will be incremented by one if at least one thread in a warp takes the branch."

"divergent branch" - "Number of divergent branches within a warp. This counter will be incremented by one if at least one tread in a warp diverges (that is, follows a different execution path) via a data dependent conditional branch."

But I am really confused about the results. Why the numbers of "branch" for each test group are different? And why only the third test group seems to have the right "divergent branch"?

@JackOLantern: I compiled in release mode. I disassembled it in your way. The results of "gpu_test_divergency_4" is exactly the same as yours but the result of "gpu_test_divergency_0" is different:

    Function : _Z21gpu_test_divergency_0PfS_
/*0000*/     /*0x00005de428004404*/     MOV R1, c [0x1] [0x100];
/*0008*/     /*0x94001c042c000000*/     S2R R0, SR_CTAid_X;
/*0010*/     /*0x84009c042c000000*/     S2R R2, SR_Tid_X;
/*0018*/     /*0x20009ca320044000*/     IMAD R2, R0, c [0x0] [0x8], R2;
/*0020*/     /*0xfc21dc23188e0000*/     ISETP.LT.AND P0, pt, R2, RZ, pt;
/*0028*/     /*0x0920de0418000000*/     I2F.F32.S32 R3, R2;
/*0030*/     /*0x9020204340004000*/     @!P0 ISCADD R0, R2, c [0x0] [0x24], 0x2;
/*0038*/     /*0x8020804340004000*/     @P0 ISCADD R2, R2, c [0x0] [0x20], 0x2;
/*0040*/     /*0x0000e08590000000*/     @!P0 ST [R0], R3;
/*0048*/     /*0x0020c08590000000*/     @P0 ST [R2], R3;
/*0050*/     /*0x00001de780000000*/     EXIT;

I guess, like you said, conversion instructions (I2F in this case) do not add extra branch.

But I cannot see the relationship between these disassembled code and the Profiler results. I learned from another post (https://devtalk.nvidia.com/default/topic/463316/branch-divergent-branches/) that divergent branch is calculated with the actual thread(warp) running situation on SMs. So I guess we cannot deduce the branch divergence of each actual running, just according to these disassembled code. Am I right?


回答1:


FOLLOW UP - USING VOTE INTRINSICS TO CHECK THREAD DIVERGENCE

I think the best way to check about thread divergence within warps is using vote intrinsics and in particular the __ballot and __popc intrinsics. A good explanation on __ballot and __popc is available in the book by Shane Cook, CUDA Programming, Morgan Kaufmann.

The prototype of __ballot is the following

unsigned int __ballot(int predicate);

If predicate is nonzero, __ballot returns a value with the Nth bit set, where N is threadIdx.x.

On the other side, __popc returns the number of bits set withing a 32-bit parameter.

So, by jointly using __ballot, __popc and atomicAdd, one can check if a warp is divergent or not.

To this end, I have set up the following code

#include <cuda.h>
#include <stdio.h>
#include <iostream>

#include <cuda.h>
#include <cuda_runtime.h>

__device__ unsigned int __ballot_non_atom(int predicate)
{
    if (predicate != 0) return (1 << (threadIdx.x % 32));
    else return 0;
}

__global__ void gpu_test_divergency_0(unsigned int* d_ballot, int Num_Warps_per_Block)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    const unsigned int warp_num = threadIdx.x >> 5;

    atomicAdd(&d_ballot[warp_num+blockIdx.x*Num_Warps_per_Block],__popc(__ballot_non_atom(tid > 2)));
    //  atomicAdd(&d_ballot[warp_num+blockIdx.x*Num_Warps_per_Block],__popc(__ballot(tid > 2)));

}

#include <conio.h>

int main(int argc, char *argv[])
{
    unsigned int Num_Threads_per_Block      = 64;
    unsigned int Num_Blocks_per_Grid        = 1;
    unsigned int Num_Warps_per_Block        = Num_Threads_per_Block/32;
    unsigned int Num_Warps_per_Grid         = (Num_Threads_per_Block*Num_Blocks_per_Grid)/32;

    unsigned int* h_ballot = (unsigned int*)malloc(Num_Warps_per_Grid*sizeof(unsigned int));
    unsigned int* d_ballot; cudaMalloc((void**)&d_ballot, Num_Warps_per_Grid*sizeof(unsigned int));

    for (int i=0; i<Num_Warps_per_Grid; i++) h_ballot[i] = 0;

    cudaMemcpy(d_ballot, h_ballot, Num_Warps_per_Grid*sizeof(unsigned int), cudaMemcpyHostToDevice);

    gpu_test_divergency_0<<<Num_Blocks_per_Grid,Num_Threads_per_Block>>>(d_ballot,Num_Warps_per_Block);

    cudaMemcpy(h_ballot, d_ballot, Num_Warps_per_Grid*sizeof(unsigned int), cudaMemcpyDeviceToHost);

    for (int i=0; i<Num_Warps_per_Grid; i++) { 
        if ((h_ballot[i] == 0)||(h_ballot[i] == 32)) std::cout << "Warp " << i << " IS NOT divergent- Predicate true for " << h_ballot[i] << " threads\n";
            else std::cout << "Warp " << i << " IS divergent - Predicate true for " << h_ballot[i] << " threads\n";
    }

    getch();
    return EXIT_SUCCESS;
}

Please, note that I'm right now running the code on a compute capability 1.2 card, so in the example above I'm using __ballot_non_atom which is a non-intrinsic equivalent to __ballot, since __ballot is available only for compute capability >= 2.0. In other words, if you have a card with compute capability >= 2.0, please uncommented the instruction using __ballot in the kernel function.

With the above code, you can play with all your kernel functions above by simply changing the relevant predicate in the kernel function.

PREVIOUS ANSWER

I compiled your code for a compute capability 2.0 under release mode and I used -keep to retain intermediate files and the cuobjdump utility to produce the disassembly of two of your kernels, namely:

static __global__ void gpu_test_divergency_0(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0) a[tid] = tid;
    else b[tid] = tid;
}

and

static __global__ void gpu_test_divergency_4(float *a, float *b)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;
    if (tid < 0) a[tid] = tid + 1;
    else b[tid] = tid + 2;
}

The results are the following

gpu_test_divergency_0

/*0000*/        MOV R1, c[0x1][0x100];                 /* 0x2800440400005de4 */
/*0008*/        S2R R0, SR_CTAID.X;                    /* 0x2c00000094001c04 */
/*0010*/        S2R R2, SR_TID.X;                      /* 0x2c00000084009c04 */
/*0018*/        IMAD R2, R0, c[0x0][0x8], R2;          /* 0x2004400020009ca3 */
/*0020*/        ISETP.LT.AND P0, PT, R2, RZ, PT;       /* 0x188e0000fc21dc23 */
/*0028*/        I2F.F32.S32 R0, R2;                    /* 0x1800000009201e04 */
/*0030*/   @!P0 ISCADD R3, R2, c[0x0][0x24], 0x2;      /* 0x400040009020e043 */
/*0038*/    @P0 ISCADD R2, R2, c[0x0][0x20], 0x2;      /* 0x4000400080208043 */
/*0040*/   @!P0 ST [R3], R0;                           /* 0x9000000000302085 */
/*0048*/    @P0 ST [R2], R0;                           /* 0x9000000000200085 */
/*0050*/        EXIT ;                                 /* 0x8000000000001de7 */

and

gpu_test_divergency_4

/*0000*/        MOV R1, c[0x1][0x100];                 /* 0x2800440400005de4 */
/*0008*/        S2R R0, SR_CTAID.X;                    /* 0x2c00000094001c04 */   R0 = BlockIdx.x
/*0010*/        S2R R2, SR_TID.X;                      /* 0x2c00000084009c04 */   R2 = ThreadIdx.x
/*0018*/        IMAD R0, R0, c[0x0][0x8], R2;          /* 0x2004400020001ca3 */   R0 = R0 * c + R2
/*0020*/        ISETP.LT.AND P0, PT, R0, RZ, PT;       /* 0x188e0000fc01dc23 */   If statement
/*0028*/    @P0 BRA.U 0x58;                            /* 0x40000000a00081e7 */   Branch 1 - Jump to 0x58
/*0030*/   @!P0 IADD R2, R0, 0x2;                      /* 0x4800c0000800a003 */   Branch 2 - R2 = R0 + 2
/*0038*/   @!P0 ISCADD R0, R0, c[0x0][0x24], 0x2;      /* 0x4000400090002043 */   Branch 2 - Calculate gmem address
/*0040*/   @!P0 I2F.F32.S32 R2, R2;                    /* 0x180000000920a204 */   Branch 2 - R2 = R2 after int to float cast
/*0048*/   @!P0 ST [R0], R2;                           /* 0x900000000000a085 */   Branch 2 - gmem store
/*0050*/   @!P0 BRA.U 0x78;                            /* 0x400000008000a1e7 */   Branch 2 - Jump to 0x78 (exit)
/*0058*/    @P0 IADD R2, R0, 0x1;                      /* 0x4800c00004008003 */   Branch 1 - R2 = R0 + 1
/*0060*/    @P0 ISCADD R0, R0, c[0x0][0x20], 0x2;      /* 0x4000400080000043 */   Branch 1 - Calculate gmem address
/*0068*/    @P0 I2F.F32.S32 R2, R2;                    /* 0x1800000009208204 */   Branch 1 - R2 = R2 after int to float cast
/*0070*/    @P0 ST [R0], R2;                           /* 0x9000000000008085 */   Branch 1 - gmem store
/*0078*/        EXIT ;                                 /* 0x8000000000001de7 */

From the above disassemblies, I would expect that the results of your branch divergency tests be the same.

Are you compiling in a debug or release mode?



来源:https://stackoverflow.com/questions/19334589/cuda-confusion-about-the-visual-profiler-results-of-branch-and-divergent-br

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!