2017.4-Jeff Donahue, Trevor Darrell-Adversarial feature learning-UCB-ICLR2017
- 本文创新点:提出 BiGANs,能够进行 inverse mapping (data => latent space)
- 在GAN 中引入 encoder,命名为 Bi-GAN, 将 discriminator 对 X 和 G(z) 的判别转化为对 (x, E(x)) 和 (G(z), z) 的判别。
- 推导证明了 BiGAN 最优的 E 和 G 是互逆的:
- 推导证明了 BiGAN 与 loss 下的 autoencoder 是 closely related.
- 本文的 traning, hyper param. setting 与 evaluation 等,均沿用前人文献。
Abstract
- Target of the research
- Learn feature repre. for auxiliary problems where semantics are relevant.
- GAN
- cannot project: data => latent space
- This paper
- propose BiGANs
- ability of inverse mapping: data => latent space
- Result
- the resulting learned feature representation is useful for auxiliary supervised discrimination tasks
adversarial (minimax) objective
- GAN:

- BiGAN:
- optimize the Jensen-Shannon divergence between the joint dist. and

来源:CSDN
作者:元气少女wuqh
链接:https://blog.csdn.net/tsinghuahui/article/details/83047903