问题
I am trying to write a mechanism to detect if a type is a pointer like type. By that I mean it is dereferencable through operator*()
and operator->()
.
I have three different structs that are specialized accordingly:
is_pointer_like_dereferencable
which checks foroperator*()
is_pointer_like_arrow_dereferencable
which checks foroperator->()
is_pointer_like
which simply combines 1 & 2
I added specializations for non-templated types like int, int*, ...
and for templated types like std::vector<...>, std::shared_ptr<...>, ...
.
However, it seems that I made a mistake when implementing is_pointer_like_arrow_dereferencable
. The relevant code is
template <typename T, typename = void>
struct is_pointer_like_arrow_dereferencable : std::false_type
{
};
template <typename T>
struct is_pointer_like_arrow_dereferencable<T, std::enable_if_t<
std::is_pointer_v<T> ||
std::is_same_v<decltype(std::declval<T>().operator->()), std::add_pointer_t<T>>>
> : std::true_type
{
};
template <template <typename...> typename P, typename T, typename... R>
struct is_pointer_like_arrow_dereferencable<P<T, R...>, std::enable_if_t<
std::is_same_v<decltype(std::declval<P<T, R...>>().operator->()), std::add_pointer_t<T>>>
> : std::true_type
{
};
template <typename T>
constexpr bool is_pointer_like_arrow_dereferencable_v = is_pointer_like_arrow_dereferencable<T>::value;
The 2nd struct should check if a non-templated type is either an actual pointer type or if the type does have an arrow operator that returns a pointer to itself. But when I test the mechanism with the code below, pointer types (like int*
are not detected correctly). Why is that?
template <typename T>
struct Test
{
T& operator*()
{
return *this;
}
T* operator->()
{
return this;
}
};
void main()
{
bool
a = is_pointer_like_arrow_dereferencable_v<int>, // false
b = is_pointer_like_arrow_dereferencable_v<int*>, // false, should be true
c = is_pointer_like_arrow_dereferencable_v<vector<int>>, // false
d = is_pointer_like_arrow_dereferencable_v<vector<int>*>, // false, should be true
e = is_pointer_like_arrow_dereferencable_v<Test<int>>, // true
f = is_pointer_like_arrow_dereferencable_v<Test<int>*>, // false, should be true
g = is_pointer_like_arrow_dereferencable_v<shared_ptr<int>>, // true
h = is_pointer_like_arrow_dereferencable_v<shared_ptr<int>*>, // false, should be true
i = is_pointer_like_arrow_dereferencable_v<int***>; // false
}
The is_pointer_like_dereferencable
struct only differs at the std::is_same_v<...>
part and it does detect actual pointer types correctly.
The fact that it fails to detect pointer types (which should be covered by std::is_pointer_v<...>
) doesn't make any sense to me. Can someone explain this?
回答1:
But when I test the mechanism with the code below, pointer types (like int* are not detected correctly). Why is that?
S.F.I.N.A.E.: Substitution Failure Is Not An Error
So, for int*
, from decltype(std::declval<T>().operator->()
you get a substitution failure and the specialization isn't considered. So is used the general form, so std::false
You should write two specializations: one or pointers and one for operator->()
enabled classes.
Bonus answer: instead of type traits as is_pointer_like_arrow_dereferencable
(overcomplicated, IMHO), I propose you to pass through a set of helper functions (only declared)
template <typename>
std::false_type is_pointer_like (unsigned long);
template <typename T>
auto is_pointer_like (int)
-> decltype( * std::declval<T>(), std::true_type{} );
template <typename T>
auto is_pointer_like (long)
-> decltype( std::declval<T>().operator->(), std::true_type{} );
so is_pointer_like_arrow_dereferencable
can be simply written as a using
template <typename T>
using is_pointer_like_arrow_dereferencable = decltype(is_pointer_like<T>(0));
with helper is_pointer_like_arrow_dereferencable_v
template <typename T>
static auto const is_pointer_like_arrow_dereferencable_v
= is_pointer_like_arrow_dereferencable<T>::value;
The following is a full working example
#include <type_traits>
#include <iostream>
#include <memory>
#include <vector>
template <typename>
std::false_type is_pointer_like (unsigned long);
template <typename T>
auto is_pointer_like (int)
-> decltype( * std::declval<T>(), std::true_type{} );
template <typename T>
auto is_pointer_like (long)
-> decltype( std::declval<T>().operator->(), std::true_type{} );
template <typename T>
using is_pointer_like_arrow_dereferencable = decltype(is_pointer_like<T>(0));
template <typename T>
static auto const is_pointer_like_arrow_dereferencable_v
= is_pointer_like_arrow_dereferencable<T>::value;
template <typename T>
struct Test
{
T & operator* () { return *this; }
T * operator-> () { return this; }
};
int main()
{
std::cout << is_pointer_like_arrow_dereferencable_v<int>
<< std::endl, // false
std::cout << is_pointer_like_arrow_dereferencable_v<int*>
<< std::endl, // true
std::cout << is_pointer_like_arrow_dereferencable_v<std::vector<int>>
<< std::endl, // false
std::cout << is_pointer_like_arrow_dereferencable_v<std::vector<int>*>
<< std::endl, // true
std::cout << is_pointer_like_arrow_dereferencable_v<Test<int>>
<< std::endl, // true
std::cout << is_pointer_like_arrow_dereferencable_v<Test<int>*>
<< std::endl, // true
std::cout << is_pointer_like_arrow_dereferencable_v<std::shared_ptr<int>>
<< std::endl, // true
std::cout << is_pointer_like_arrow_dereferencable_v<std::shared_ptr<int>*>
<< std::endl, // true
std::cout << is_pointer_like_arrow_dereferencable_v<int***>
<< std::endl; // true
}
回答2:
I suggest to use std::experimental::is_detected and then simply have:
template <typename T> dereferencable_type = decltype(*declval<T>());
template <typename T> arrow_type = decltype(declval<T>().operator->());
template <typename T> is_dereferencable =
std::experimental::is_detected<dereferencable_type, T>;
template <typename T> has_arrow = std::experimental::is_detected<arrow_type, T>;
and then compose those traits:
template <typename T>
using is_pointer_like_dereferencable = is_dereferencable<T>;
template <typename T>
is_pointer_like_arrow_dereferencable = std::disjunction<std::is_pointer<T>, has_arrow<T>>;
template <typename T>
std::is_pointer_like = std::conjunction<is_pointer_like_dereferencable<T>,
is_pointer_like_arrow_dereferencable<T>>;
回答3:
First off, this specialization is at best pointless, but actually wrong:
template <template <typename...> typename P, typename T, typename... R>
struct is_pointer_like_arrow_dereferencable<P<T, R...>,
std::enable_if_t<
std::is_same_v<
decltype(std::declval<P<T, R...>>().operator->()),
std::add_pointer_t<T>>>
> : std::true_type
{ };
There isn't anything special about class template specializations with all type parameters when it comes to being pointer-like. So you shouldn't need to treat P<T, R...>
any differently than just T
.
Now, this specialization also has problems:
template <typename T>
struct is_pointer_like_arrow_dereferencable<T,
std::enable_if_t<
std::is_pointer_v<T> ||
std::is_same_v<decltype(std::declval<T>().operator->()), std::add_pointer_t<T>>>
> : std::true_type
{
};
First, raw pointers don't have .operator->()
. That makes the whole boolean expression ill-formed, which causes the entire specialization to get thrown out. Short circuiting happens on an expression by expression basis, but each expression still has to be valid.
Second, ->
doesn't have to return add_pointer_t<T>
. std::vector<X>::iterator::operator->
returns an X*
, not an iterator*
. So that's just checking the wrong thing.
We can let the base case check for pointers, and just let the specialization check for .operator->
across all types (whether they're class template specializations or not):
template <typename T, typename = void>
struct is_pointer_like_arrow_dereferencable
: std::is_pointer<T>
{ };
template <typename T>
struct is_pointer_like_arrow_dereferencable<T,
void_t<decltype(std::declval<T>().operator->())>
>
: std::true_type
{ };
That said, is_pointer
probably isn't sufficient since it doesn't make sense for int*
to be "arrow dereferenceable". So you probably want to do something like:
template <typename T, typename = void>
struct is_pointer_like_arrow_dereferencable
: std::false_type
{ };
template <typename T>
struct is_pointer_like_arrow_dereferencable<T*, void>
: std::disjunction<std::is_class<T>, std::is_union<T>>
{ };
Or some such.
回答4:
Based on Jarod42's answer (which doesn't compile for me), I created the following code snippet (C++17),
#include "sys.h" // Required for libcwd (debug output).
#include "debug.h" // Required for libcwd (debug output).
#include <vector>
#include <memory>
#include <iostream>
//-----------------------------------------------------------------------------
// Start of implementation.
#include <experimental/type_traits>
#include <type_traits>
template<typename T> using dereferencable_type =
decltype(*std::declval<T>());
template<typename T> using arrow_type =
decltype(std::declval<T>().operator->());
template<typename T> using is_dereferencable =
std::experimental::is_detected<dereferencable_type, T>;
template<typename T> using has_arrow =
std::experimental::is_detected<arrow_type, T>;
template<typename T> using is_pointer_like_dereferencable =
is_dereferencable<T>;
template<typename T> using is_pointer_like_arrow_dereferencable =
std::disjunction<std::is_pointer<T>, has_arrow<T>>;
template <typename T> using is_pointer_like =
std::conjunction<is_pointer_like_dereferencable<T>,
is_pointer_like_arrow_dereferencable<T>>;
template<typename T> inline constexpr bool is_pointer_like_dereferencable_v =
is_pointer_like_dereferencable<T>::value;
template<typename T> inline constexpr bool is_pointer_like_arrow_dereferencable_v =
is_pointer_like_arrow_dereferencable<T>::value;
template<typename T> inline constexpr bool is_pointer_like_v =
is_pointer_like<T>::value;
// End of implementation
//-----------------------------------------------------------------------------
template<typename T>
struct TestNone
{
static int const n;
};
template<typename T>
struct TestRef : public TestNone<T>
{
T const& operator*() { return TestNone<T>::n; }
};
template<typename T>
struct TestArrow : public TestNone<T>
{
TestArrow const* operator->() { return this; }
};
template<typename T>
struct TestBoth : virtual public TestRef<T>, virtual public TestArrow<T>
{
};
//static
template<typename T>
int const TestNone<T>::n = 42;
template<typename T>
void test()
{
Dout(dc::notice|continued_cf, '"' <<
libcwd::type_info_of<T>().demangled_name() << "\" is ");
bool something = true;
if (is_pointer_like_v<T>)
Dout(dc::continued, "pointer-like.");
else
{
if (is_pointer_like_arrow_dereferencable_v<T>)
Dout(dc::continued, "arrow dereferencable; ");
else
something = is_pointer_like_dereferencable_v<T>;
if (is_pointer_like_dereferencable_v<T>)
Dout(dc::continued, "dereferencable; ");
}
if (!something)
Dout(dc::continued, "not a pointer or pointer-like.");
Dout(dc::finish, "");
}
int main()
{
Debug(NAMESPACE_DEBUG::init());
test<int>();
test<int*>();
test<std::vector<int>>();
test<std::vector<int>*>();
test<std::shared_ptr<int>>();
test<std::shared_ptr<int>*>();
test<std::shared_ptr<int***>>();
test<TestNone<int>>();
test<TestNone<int>*>();
test<TestRef<int>>();
test<TestRef<int>*>();
test<TestArrow<int>>();
test<TestArrow<int>*>();
test<TestBoth<int>>();
test<TestBoth<int>*>();
}
where sys.h
and debug.h
are 'standard' headers from the git submodule cwds.
This prints the following debug output:
NOTICE : "
int
" is not a pointer or pointer-like.
NOTICE : "int*
" is pointer-like.
NOTICE : "std::vector<int, std::allocator<int> >
" is not a pointer or pointer-like.
NOTICE : "std::vector<int, std::allocator<int> >*
" is pointer-like.
NOTICE : "std::shared_ptr<int>
" is pointer-like.
NOTICE : "std::shared_ptr<int>*
" is pointer-like.
NOTICE : "std::shared_ptr<int***>
" is pointer-like.
NOTICE : "TestNone<int>
" is not a pointer or pointer-like.
NOTICE : "TestNone<int>*
" is pointer-like.
NOTICE : "TestRef<int>
" is dereferencable;
NOTICE : "TestRef<int>*
" is pointer-like.
NOTICE : "TestArrow<int>
" is arrow dereferencable;
NOTICE : "TestArrow<int>*
" is pointer-like.
NOTICE : "TestBoth<int>
" is pointer-like.
NOTICE : "TestBoth<int>*
" is pointer-like.
来源:https://stackoverflow.com/questions/49904809/template-function-for-detecting-pointer-like-dereferencable-types-fails-for-ac