how to display a projected map on an R::lattice::layerplot?

半城伤御伤魂 提交于 2019-12-07 23:40:31

One way to do this, though ugly, is to "fix" the coordinates in the state.map obtained from maps::map, using the linear IOAPI transform. E.g.,

example 3: produces output like

##### start example 3 #####

library("M3")        # http://cran.r-project.org/web/packages/M3/
library("rasterVis") # http://cran.r-project.org/web/packages/rasterVis/

## Use an example file with projection=Lambert conformal conic.
# lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3")
# See notes in question regarding unfortunate problem with raster::raster,
# and remember to download or rename the file (symlinking alone will not work).
lcc.file <- "./ozone_lcc.nc"

lcc.proj4 <- M3::get.proj.info.M3(lcc.file)
lcc.proj4   # debugging
# [1] "+proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000"
# Note +lat_0=40 +lat_1=33 +lat_2=45 for maps::map@projection (below)
lcc.crs <- sp::CRS(lcc.proj4)
lcc.pdf <- "./ozone_lcc.example3.pdf" # for output

## Read in variable with daily ozone.
# o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs)
# ozone_lcc.nc has 4 timesteps, choose 1 at random
o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs, level=1)
o3.raster@crs <- lcc.crs # why does the above assignment not take?
# start debugging
o3.raster
summary(coordinates(o3.raster)) # thanks, Felix Andrews!
M3::get.grid.info.M3(lcc.file)
#   end debugging

# > o3.raster
# class       : RasterLayer 
# band        : 1 
# dimensions  : 112, 148, 16576  (nrow, ncol, ncell)
# resolution  : 1, 1  (x, y)
# extent      : 0.5, 148.5, 0.5, 112.5  (xmin, xmax, ymin, ymax)
# coord. ref. : +proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000 
# data source : .../ozone_lcc.nc 
# names       : O3 
# z-value     : 1 
# zvar        : O3 
# level       : 1 

# > summary(coordinates(o3.raster))
#        x                y         
#  Min.   :  1.00   Min.   :  1.00  
#  1st Qu.: 37.75   1st Qu.: 28.75  
#  Median : 74.50   Median : 56.50  
#  Mean   : 74.50   Mean   : 56.50  
#  3rd Qu.:111.25   3rd Qu.: 84.25  
#  Max.   :148.00   Max.   :112.00  

# > M3::get.grid.info.M3(lcc.file)
# $x.orig
# [1] -2736000
# $y.orig
# [1] -2088000
# $x.cell.width
# [1] 36000
# $y.cell.width
# [1] 36000
# $hz.units
# [1] "m"
# $ncols
# [1] 148
# $nrows
# [1] 112
# $nlays
# [1] 1

# The grid (`coordinates(o3.raster)`) is integers, because this
# data is stored using the IOAPI convention. IOAPI makes the grid
# Cartesian by using an (approximately) equiareal projection (LCC)
# and abstracting grid positioning to metadata stored in netCDF
# global attributes. Some of this spatial metadata can be accessed
# by `M3::get.grid.info.M3` (above), and some can be accessed via
# the coordinate reference system (`CRS`, see `lcc.proj4` above)

## Get US state boundaries in projection units.
state.map <- maps::map(
  database="state", projection="lambert", par=c(33,45), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject

# replace its coordinates with
metadata.coords.IOAPI.list <- M3::get.grid.info.M3(lcc.file)
metadata.coords.IOAPI.x.orig <- metadata.coords.IOAPI.list$x.orig
metadata.coords.IOAPI.y.orig <- metadata.coords.IOAPI.list$y.orig
metadata.coords.IOAPI.x.cell.width <- metadata.coords.IOAPI.list$x.cell.width
metadata.coords.IOAPI.y.cell.width <- metadata.coords.IOAPI.list$y.cell.width
map.lines <- M3::get.map.lines.M3.proj(
  file=lcc.file, database="state", units="m")
map.lines.coords.IOAPI.x <-
  (map.lines$coords[,1] - metadata.coords.IOAPI.x.orig)/metadata.coords.IOAPI.x.cell.width
map.lines.coords.IOAPI.y <-
  (map.lines$coords[,2] - metadata.coords.IOAPI.y.orig)/metadata.coords.IOAPI.y.cell.width
map.lines.coords.IOAPI <- 
  cbind(map.lines.coords.IOAPI.x, map.lines.coords.IOAPI.y)
# start debugging
class(map.lines.coords.IOAPI)
summary(map.lines.coords.IOAPI)
#   end debugging

# >     class(map.lines.coords.IOAPI)
# [1] "matrix"
# >     summary(map.lines.coords.IOAPI)
#  map.lines.coords.IOAPI.x map.lines.coords.IOAPI.y
#  Min.   : 12.88           Min.   :14.47           
#  1st Qu.: 78.62           1st Qu.:39.28           
#  Median :101.37           Median :57.25           
#  Mean   : 95.17           Mean   :55.65           
#  3rd Qu.:124.47           3rd Qu.:72.57           
#  Max.   :140.51           Max.   :93.16           
#  NA's   :168              NA's   :168        

coordinates(state.map.shp) <- map.lines.coords.IOAPI # FAIL:
> Error in `coordinates<-`(`*tmp*`, value = c(99.0242231482288, 99.1277727928691,  : 
>   setting coordinates cannot be done on Spatial objects, where they have already been set

state.map.IOAPI <- state.map # copy
state.map.IOAPI$x <- map.lines.coords.IOAPI.x
state.map.IOAPI$y <- map.lines.coords.IOAPI.y
state.map.IOAPI$range <- c(
  min(map.lines.coords.IOAPI.x),
  max(map.lines.coords.IOAPI.x),
  min(map.lines.coords.IOAPI.y),
  max(map.lines.coords.IOAPI.y))
state.map.IOAPI.shp <-
  maptools::map2SpatialLines(state.map.IOAPI, proj4string=lcc.crs)
# start debugging
# thanks, Felix Andrews!
class(state.map.IOAPI.shp)
summary(do.call("rbind",
  unlist(coordinates(state.map.IOAPI.shp), recursive=FALSE)))
#   end debugging

# > class(state.map.IOAPI.shp)
# [1] "SpatialLines"
# attr(,"package")
# [1] "sp"

# > summary(do.call("rbind",
# +   unlist(coordinates(state.map.IOAPI.shp), recursive=FALSE)))
#        V1               V2       
#  Min.   : 12.88   Min.   :14.47  
#  1st Qu.: 78.62   1st Qu.:39.28  
#  Median :101.37   Median :57.25  
#  Mean   : 95.17   Mean   :55.65  
#  3rd Qu.:124.47   3rd Qu.:72.57  
#  Max.   :140.51   Max.   :93.16  

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.IOAPI.shp, lwd=0.8, col='darkgray'))
dev.off()
# change this for viewing PDF on your system
system(sprintf("xpdf %s", lcc.pdf))

#####   end example 3 #####
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!