predict and multiplicative variables / interaction terms in probit regressions

此生再无相见时 提交于 2019-12-07 20:37:32

When interpreting the results of models involving interaction terms, the general rule is DO NOT interpret coefficients. The very presence of interactions means that the meaning of coefficients for terms will vary depending on the other variate values being used for prediction. The right way to go about looking at the results is to construct a "prediction grid", i.e. a set of values that are spaced across the range of interest (hopefully within the domain of data support). The two essential functions for this process are expand.grid and predict.

dgrid <- expand.grid(b=fivenum(data$b)[2:4], c=fivenum(data$c)[2:4]
# A grid with the upper and lower hinges and the medians for `a` and `b`.

predict(my_probit,  newdata=dgrid)

You may want to have the predictions on a scale other than the default (which is to return the linear predictor), so perhaps this would be easier to interpret if it were:

predict(my_probit,  newdata=dgrid, type ="response")

Be sure to read ?predict and ?predict.glm and work with some simple examples to make sure you are getting what you intended.

Predictions from models containing interactions (at least those involving 2 covariates) should be thought of as being surfaces or 2-d manifolds in three dimensions. (And for 3-covariate interactions as being iso-value envelopes.) The reason that non-interaction models can be decomposed into separate term "effects" is that the slopes of the planar prediction surfaces remain constant across all levels of input. Such is not the case with interactions, especially those with multiplicative and non-linear model structures. The graphical tools and insights that one picks up in a differential equations course can be productively applied here.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!