题目描述
$duyege$的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹。
为了查出真相,$duyege$准备修好电脑之后再进行一次金坷垃的模拟实验。
电脑上面有若干层金坷垃,每次只能在上面撒上一层高度为$v_i$的金坷垃,或者除掉最新$v_i$层(不是量)撒的金坷垃。如果上面只留有不足$v_i$层金坷垃,那么就相当于电脑上面没有金坷垃了。
$duyege$非常严谨,一开始先给你$m$个上述操作要你依次完成。然后又对实验步骤进行了$q$次更改,每次更改都会改变其中一个操作为另外一个操作。每次修改之后都会询问最终金坷垃的量有多少。
输入格式
输入第一行为两个正整数$m$、$q$,接下来$m$行每行$2$个整数$k$、$v_i$。$k$为$0$时撒金坷垃,为$1$时除金坷垃。接下来$q$行每行$3$个整数$c_i$、$k$、$v_i$,$c_i$代表被更改的操作是第$c_i$个,后面$2$个数描述更改为这样的操作。
输出格式
输出$q$行代表每次金坷垃的量为多少。
样例
样例输入
10 5
0 10
1 5
0 13
0 18
0 2
1 1
0 8
0 9
1 3
0 7
9 0 3
10 1 7
6 0 8
10 0 5
8 1 2
样例输出
58
0
0
66
41
数据范围与提示
对于$30%$的数据$m\leqslant 1,000,q\leqslant 1,000$。
对于另外$20%$的数据,每次$k=1$时都会将金坷垃清空。
对于$100%$的数据,$m\leqslant 2\times {10}^5,q\leqslant 2\times {10}^5,v_i\leqslant {10}^4$。
题解