问题
I am using the following code to summarize my data by a column
library(data.table, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)
################
## PARAMETERS ##
################
# Set path of major source folder for raw transaction data
in_directory <- "C:/Users/NAME/Documents/Raw Data/"
# List names of sub-folders (currently grouped by first two characters of CUST_ID)
in_subfolders <- list("AA-CA", "CB-HZ")
# Set location for output
out_directory <- "C:/Users/NAME/Documents/YTD Master/"
out_filename <- "OUTPUT.csv"
# Set beginning and end of date range to be collected - year-month-day format
date_range <- interval(as.Date("2017-01-01"), as.Date("2017-01-31"))
# Enable or disable filtering of raw files to only grab items bought within certain months to save space.
# If false, all files will be scanned for unique items, which will take longer and be a larger file.
date_filter <- TRUE
##########
## CODE ##
##########
starttime <- Sys.time()
mastertable <- NULL
for (j in 1:length(in_subfolders)) {
subfolder <- in_subfolders[j]
sub_directory <- paste0(in_directory, subfolder, "/")
## IMPORT DATA
in_filenames <- dir(sub_directory, pattern =".txt")
for (i in 1:length(in_filenames)) {
# Default value provided for when fast filtering is disabled.
read_this_file <- TRUE
# To fast filter the data, we choose to include or exclude an entire file based on the date of its first line.
# WARNING: This is only a valid method if filtering by entire months, since that is the amount of data housed in each file.
if (date_filter) {
temptable <- fread(paste0(sub_directory, in_filenames[i]), colClasses=c(CUSTOMER_TIER = "character"),
na.strings = "", nrows = 1)
temptable[, INVOICE_DT := as.Date(INVOICE_DT)]
# If date matches, set read flag to TRUE. If date does not match, set read flag to FALSE.
read_this_file <- temptable[, INVOICE_DT] %within% date_range
}
if (read_this_file) {
print(Sys.time()-starttime)
print(paste0("Reading in ", in_filenames[i]))
temptable <- fread(paste0(sub_directory, in_filenames[i]), colClasses = c(CUSTOMER_TIER = "character"),
na.strings = "")
temptable <- temptable[,lapply(.SD, sum), by = .(CUST_ID),
.SDcols = c("Ext Sale")]
# Combine into full list
mastertable <- rbindlist(list(mastertable, temptable), use.names = TRUE)
# Release unneeded memory
rm(temptable)
}
}
}
# Save Final table
print("Saving master table")
fwrite(mastertable, paste0(out_directory, out_filename))
rm(mastertable)
print(Sys.time()-starttime)
The output i receive after running the above script for the month of January is as below and this is the output I expect.
CUST_ID Ext Sale
AK0010001 209.97
CO0020001 1540.3
The problem arises when i use multiple months. Below is the output I receive when I run Jan-Feb date_range <- interval(as.Date("2017-01-01"), as.Date("2017-02-28"))
CUST_ID Ext Sale
AK0010001 209.97
AK0010001 217.833
CO0020001 1540.3
CO0010001 -179.765
As you can see in the output above the CUST_ID is no longer consolidating.
Does anyone know why this would be happening?
Below I have provided some data to reproduce what I am working with. Just save the files into 4 separate text file and into folders like I have it in my code.
I have 2 separate folders saved as "AA-CA" and "CB-HZ"
File 1 saved as "AA-CA 2017-01.txt"
INVOICE_DT,BRANCH_CODE,INVOICE_NO,INV_SEQ_NO,INV_ITEM_ID,ITEM_DESCR,STD_ITEM,PRIVATE_LABEL,CATEGORY_PATH1,CATEGORY_PATH2,CUST_ID,CUSTOMER_TIER,IS_VENDING,SALE_PRICE,TOTAL_COST,POS_COST,CE100,CE110,CE120,CE200,CORP_PRICE,QTY_SOLD,PACKSLIP_WHSL,PRICING_GROUP,PGG_MIN_PRICE,PGY_MIN_PRICE,PGR_MIN_PRICE,Ext Sale,Ext Total Cost
2017-01-27,AK001,AK0016997,4,12772-00079,"3.75"""""""" 4.12"""""""" HOSE OD",N,N,08.5-Fleet & Automotive,01.6-DOT Hose & Tubing,AK0010001,Tier 3,No,42.74,22.438335,22.438335,21.37,,,0,,3,,PGR,168.2875125,134.63001,112.191675,128.22,67.315005
2017-01-27,AK001,AK0016997,3,12772-00022,"2.5"""""""" 2.87"""""""" HOSE OD C",N,N,08-Hydraulics & Pneumatics,02-Hose and Hose Reels,AK0010001,Tier 3,No,27.25,14.143396,14.143396,13.47,,,0,,3,,PGR,106.07547,84.860376,70.71698,81.75,42.430188
File 2 saved as "AA-CA 2017-02.txt"
INVOICE_DT,BRANCH_CODE,INVOICE_NO,INV_SEQ_NO,INV_ITEM_ID,ITEM_DESCR,STD_ITEM,PRIVATE_LABEL,CATEGORY_PATH1,CATEGORY_PATH2,CUST_ID,CUSTOMER_TIER,IS_VENDING,SALE_PRICE,TOTAL_COST,POS_COST,CE100,CE110,CE120,CE200,CORP_PRICE,QTY_SOLD,PACKSLIP_WHSL,PRICING_GROUP,PGG_MIN_PRICE,PGY_MIN_PRICE,PGR_MIN_PRICE,Ext Sale,Ext Total Cost
2017-02-28,AK001,AK0017107,1,12772-00307,3-WAY MALE HOUSING,N,N,09-Electrical,05.5-Terminals and Wire Connectors,AK0010001,Tier 3,No,95.21,74.591453,74.591453,71.04,,,0,,1,,PGG,0,0,0,95.21,74.591453
2017-02-28,AK001,AK0017105,3,99523968,PC58570 1/2 PRS BALL,Y,N,,,AK0010001,Tier 3,No,24.5246,12.356039,12.356039,11.767743,,,0,,5,,PGG,0,0,0,122.623,61.780195
File 3 saved as "CB-HZ 2017-01.txt"
INVOICE_DT,BRANCH_CODE,INVOICE_NO,INV_SEQ_NO,INV_ITEM_ID,ITEM_DESCR,STD_ITEM,PRIVATE_LABEL,CATEGORY_PATH1,CATEGORY_PATH2,CUST_ID,CUSTOMER_TIER,IS_VENDING,SALE_PRICE,TOTAL_COST,POS_COST,CE100,CE110,CE120,CE200,CORP_PRICE,QTY_SOLD,PACKSLIP_WHSL,PRICING_GROUP,PGG_MIN_PRICE,PGY_MIN_PRICE,PGR_MIN_PRICE,Ext Sale,Ext Total Cost
2017-01-31,CO002,CO0023603,19,13117-00095,8-32X5/16 BHSCS MAG,N,N,18-Work Order Parts,Finished Products,CO0020001,Tier 3,No,0.1858,0.037528,0.037528,0.01833,,,0,,6000,,PGG,0,0,0,1114.8,225.168
2017-01-31,CO002,CO0023603,20,13117-00186,"#8-16X3/4"""""""" 6-LOBE PA",N,N,01-Fasteners,03-Screws,CO0020001,Tier 3,No,0.0851,0.029652,0.029652,,,,0,,5000,,PGG,0,0,0,425.5,148.26
File 4 saved as "CB-HZ 2017-02.txt"
INVOICE_DT,BRANCH_CODE,INVOICE_NO,INV_SEQ_NO,INV_ITEM_ID,ITEM_DESCR,STD_ITEM,PRIVATE_LABEL,CATEGORY_PATH1,CATEGORY_PATH2,CUST_ID,CUSTOMER_TIER,IS_VENDING,SALE_PRICE,TOTAL_COST,POS_COST,CE100,CE110,CE120,CE200,CORP_PRICE,QTY_SOLD,PACKSLIP_WHSL,PRICING_GROUP,PGG_MIN_PRICE,PGY_MIN_PRICE,PGR_MIN_PRICE,Ext Sale,Ext Total Cost
2017-02-03,CO001,CO0019017,1,MN2550000A20000,M6-1.0 HEX NUT A-2,Y,N,01-Fasteners,04-Nuts,CO0010001,NA,No,0.0313,0.00767,0.00767,0.006215,0.000593,,0.001241,,-50,0.1058,,,,,-1.565,-0.3835
2017-02-16,CO001,CO0019018,1,11516769,RS37518BlkRndSpacer,Y,N,01.5-Hardware,Electronic Hardware,CO0010001,NA,No,0.0396,0.011245,0.011245,0.01071,,,0,,-4500,0.0543,,,,,-178.2,-50.6025
I have the data saved in 2 separate folders.
回答1:
The OP is wondering why the result is not consolidated for CUST_ID
if more than one month of data is processed.
The reason is that the monthly files are read in and aggregated one by one but a final aggregation step is needed to consolidate over all months.
The code below is a simplified replacement of the double for
loops. I have left out the code for testing for "fast filtering".
The first part creates a list of files to be processed. The second part does the processing.
# create vector of filenames to be processed
in_filenames <- list.files(
file.path(in_directory, in_subfolders),
pattern = "\\.txt$",
full.names = TRUE,
recursive = TRUE)
# read and aggregate each file separately
mastertable <- rbindlist(
lapply(in_filenames, function(fn) {
# code for "fast filter" test goes here
message("Reading in ", fn)
temptable <- fread(fn,
colClasses = c(CUSTOMER_TIER = "character"),
na.strings = "")
# aggregate
temptable[, lapply(.SD, sum), by = .(CUST_ID), .SDcols = c("Ext Sale")]
})
)[
# THIS IS THE MISSING STEP:
# second aggregation for overall totals
, lapply(.SD, sum), by = .(CUST_ID), .SDcols = c("Ext Sale")]
Processing file: Raw Data/AA-CA/AA-CA 2017-01.txt Processing file: Raw Data/AA-CA/AA-CA 2017-02.txt Processing file: Raw Data/CB-HZ/CB-HZ 2017-01.txt Processing file: Raw Data/CB-HZ/CB-HZ 2017-02.txt
mastertable
CUST_ID Ext Sale 1: AK0010001 427.803 2: CO0020001 1540.300 3: CO0010001 -179.765
Note that chaining of data.table
expressions is used here.
Edit 1:
By request of the OP, here is the complete code (except for the "fast filtering" stuff). There are some additional lines which where modified. They are marked with ### MODIFIED
.
library(data.table, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)
################
## PARAMETERS ##
################
# Set path of major source folder for raw transaction data
in_directory <- "Raw Data" ### MODIFIED
# List names of sub-folders (currently grouped by first two characters of CUST_ID)
in_subfolders <- list("AA-CA", "CB-HZ")
# Set location for output
out_directory <- "YTD Master" ### MODIFIED
out_filename <- "OUTPUT.csv"
# Set beginning and end of date range to be collected - year-month-day format
date_range <- interval(as.Date("2017-01-01"), as.Date("2017-02-28")) ### MODIFIED
# Enable or disable filtering of raw files to only grab items bought within certain months to save space.
# If false, all files will be scanned for unique items, which will take longer and be a larger file.
date_filter <- TRUE
##########
## CODE ##
##########
starttime <- Sys.time()
# create vector of filenames to be processed
in_filenames <- list.files(
file.path(in_directory, in_subfolders),
pattern = "\\.txt$",
full.names = TRUE,
recursive = TRUE)
# read and aggregate each file separetely
mastertable <- rbindlist(
lapply(in_filenames, function(fn) {
# code for fast filter test goes here
message("Processing file: ", fn)
temptable <- fread(fn,
colClasses = c(CUSTOMER_TIER = "character"),
na.strings = "")
# aggregate by month
temptable[, lapply(.SD, sum), by = .(CUST_ID), .SDcols = c("Ext Sale")]
})
)[
# second aggregation overall
, lapply(.SD, sum), by = .(CUST_ID), .SDcols = c("Ext Sale")]
# Save Final table
print("Saving master table")
fwrite(mastertable, paste0(out_directory, out_filename))
# rm(mastertable) ### MODIFIED
print(Sys.time()-starttime)
Edit 2
The OP has asked to include the "fast filter" code which I had omitted for brevity.
However, I have a different approach. Instead of reading the first line of each file to check if INVOICE_DT
is within the given date_range
my approach filters the file names. The file names contain the year-month in ISO 8601 format.
So, a vector of allowed year-month strings is constructed from the given date_range
. Only those file names which contain one of the allowed year-month strings are selected for further processing.
However, selecting the proper files is only the first step. As the date-range
may start or end right in the middel of a month, we need also to filter the rows of each processed file. This step is missing from OP's code.
library(data.table, warn.conflicts = FALSE)
library(magrittr) ### MODIFIED
# library(lubridate, warn.conflicts = FALSE) ### MODIFIED
################
## PARAMETERS ##
################
# Set path of major source folder for raw transaction data
in_directory <- "Raw Data" ### MODIFIED
# List names of sub-folders (currently grouped by first two characters of CUST_ID)
in_subfolders <- list("AA-CA", "CB-HZ")
# Set location for output
out_directory <- "YTD Master" ### MODIFIED
out_filename <- "OUTPUT.csv"
# Set beginning and end of date range to be collected - year-month-day format
date_range <- c("2017-01-01", "2017-02-14") ### MODIFIED
# Enable or disable filtering of raw files to only grab items bought within certain months to save space.
# If false, all files will be scanned for unique items, which will take longer and be a larger file.
# date_filter <- TRUE ### MODIFIED
##########
## CODE ##
##########
starttime <- Sys.time()
# create vector of filenames to be processed
in_filenames <- list.files(
file.path(in_directory, in_subfolders),
pattern = "\\.txt$",
full.names = TRUE,
recursive = TRUE)
# filter filenames, only
selected_in_filenames <-
seq(as.Date(date_range[1]),
as.Date(date_range[2]), by = "1 month") %>%
format("%Y-%m") %>%
lapply(function(x) stringr::str_subset(in_filenames, x)) %>%
unlist()
# read and aggregate each file separetely
mastertable <- rbindlist(
lapply(selected_in_filenames, function(fn) {
message("Processing file: ", fn)
temptable <- fread(fn,
colClasses = c(CUSTOMER_TIER = "character"),
na.strings = "")
# aggregate file but filtered for date_range
temptable[INVOICE_DT %between% date_range,
lapply(.SD, sum), by = .(CUST_ID, QTR = quarter(INVOICE_DT)),
.SDcols = c("Ext Sale")]
})
)[
# second aggregation overall
, lapply(.SD, sum), by = .(CUST_ID, QTR), .SDcols = c("Ext Sale")]
# Save Final table
print("Saving master table")
fwrite(mastertable, file.path(out_directory, out_filename))
# rm(mastertable) ### MODIFIED
print(Sys.time()-starttime)
mastertable
CUST_ID QTR Ext Sale 1: AK0010001 1 209.970 2: CO0020001 1 1540.300 3: CO0010001 1 -1.565
Note that date_range <- c("2017-01-01", "2017-02-14")
now ends mid of February.
来源:https://stackoverflow.com/questions/51387157/row-not-consolidating-duplicates-in-r-when-using-multiple-months-in-date-filter