链接:
https://vjudge.net/problem/HDU-3652
题意:
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
思路:
数位DP,记录前面的余数,和前一位的数,和是否已经存在13.四维DP。
如果不记录前一位的值,可能出现无法判断13是否存在。
代码:
// #include<bits/stdc++.h> #include<iostream> #include<cstdio> #include<vector> #include<string.h> #include<set> #include<queue> #include<algorithm> #include<math.h> using namespace std; typedef long long LL; const int MOD = 1e9+7; const int MAXN = 1e6+10; LL F[20][20][2][10]; LL dig[20]; LL a, b, n; LL Dfs(int pos, int pre, int num, int ok, bool lim) { if (pos == -1) { if (pre == 0 && ok) return 1; return 0; } if (!lim && F[pos][pre][ok][num] != -1) return F[pos][pre][ok][num]; int up = lim ? dig[pos] : 9; LL ans = 0; for (int i = 0;i <= up;i++) ans += Dfs(pos-1, ((pre*10)%13+i)%13, i, ok ? ok : (num == 1 && i == 3), lim && i == up); if (!lim) F[pos][pre][ok][num] = ans; return ans; } LL Solve(LL x) { int p = 0; while(x) { dig[p++] = x%10; x /= 10; } return Dfs(p-1, 0, -1, 0, 1); } int main() { // freopen("test.in", "r", stdin); memset(F, -1, sizeof(F)); while(~scanf("%lld", &n)) { printf("%lld\n", Solve(n)); } return 0; }