MySQL: Fill a table within a Stored Procedure efficiently

大城市里の小女人 提交于 2019-11-26 23:18:40

问题


I am testing performance in a MySQL Server and filling a table with more than 200 million of records. The Stored Procedure is very slow generating the big SQL string. Any help or comment is really welcome.

System Info:

  • Database: MySQL 5.6.10 InnoDB database (test).
  • Processor: AMD Phenom II 1090T X6 core, 3910Mhz each core.
  • RAM: 16GB DDR3 1600Mhz CL8.
  • HD: Windows 7 64bits SP1 in SSD, mySQL installed in SSD, logs written in mechanical hard disk.

The Stored Procedure creates a INSERT sql query with all the values to be inserted into the table.

DELIMITER $$
USE `test`$$

DROP PROCEDURE IF EXISTS `inputRowsNoRandom`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE `inputRowsNoRandom`(IN NumRows BIGINT)
BEGIN
    /* BUILD INSERT SENTENCE WITH A LOS OF ROWS TO INSERT */
    DECLARE i BIGINT;
    DECLARE nMax BIGINT;
    DECLARE squery LONGTEXT;
    DECLARE svalues LONGTEXT;

    SET i = 1;
    SET nMax = NumRows + 1;
    SET squery = 'INSERT INTO `entity_versionable` (fk_entity, str1, str2, bool1, double1, DATE) VALUES ';
    SET svalues = '("1", "a1", 100, 1, 500000, "2013-06-14 12:40:45"),';

    WHILE i < nMax DO
        SET squery = CONCAT(squery, svalues);
        SET i = i + 1;
    END WHILE;

    /*SELECT squery;*/
    SET squery = LEFT(squery, CHAR_LENGTH(squery) - 1);
    SET squery = CONCAT(squery, ";");
    SELECT squery;

    /* EXECUTE INSERT SENTENCE */
    /*START TRANSACTION;*/
    /*PREPARE stmt FROM squery;
    EXECUTE stmt;
    DEALLOCATE PREPARE stmt;
    */

    /*COMMIT;*/
END$$
DELIMITER ;


Results:

  1. Concatenating 20000 strings takes about 45 seconds to be processed:

CALL test.inputRowsNoRandom(20000);

  1. Concatenating 100000 strings takes about +5/12 minutes O_O:

CALL test.inputRowsNoRandom(100000);

Result (ordered by duration) - stateduration (summed) in sec || percentage
freeing items 0.00005 50.00000
starting 0.00002 20.00000
executing 0.00001 10.00000
init 0.00001 10.00000
cleaning up 0.00001 10.00000
Total 0.00010 100.00000

Change Of STATUS VARIABLES Due To Execution Of Query
variable value description
Bytes_received 21 Bytes sent from the client to the server
Bytes_sent 97 Bytes sent from the server to the client
Com_select 1 Number of SELECT statements that have been executed
Questions 1 Number of statements executed by the server

Tests:
I have already tested with different MySQL configurations from 12 to 64 threads, setting cache on and off, moving logs to another hardware disk...
Also tested using TEXT, INT..

Additional Information:

  • Performance links: general&multiple-cores, configuration, optimizing IO, Debiancores, best configuration, config 48gb ram..
  • Profiling a SQL query: How to profile a query, Check for possible bottleneck in a query


Questions:

  • Is something wrong in the code? If I send 100000 strings to build the final SQL string, the result of SELECT squery; is a NULL string. Whats happening? (error must be there but I dont see it).
  • Can I improve the code in any way to speed it up?
  • I have read some operations in Stored Procedures can be really slow, should I generate the file in C/Java/PHP.. and send it to mysql?

    mysql -u mysqluser -p databasename < numbers.sql

  • MySQL seems to use only one core for one single SQL query, would nginx or other database system: Multithreadted DBs, Cassandra, Redis, MongoDB..) achieve better performance with stored procedures and use more than one CPU for one query? (Since my single query is using only 20% of total CPU with about 150 threads).

UPDATE:

  • Efficent way of filling the table, check peterm answer below.
  • Performance of Stored Procedure, modern RDBMS or inline queries.

回答1:


Don't use loops especially on that scale in RDBMS.

Try to quickly fill your table with 1m rows with a query

INSERT INTO `entity_versionable` (fk_entity, str1, str2, bool1, double1, date)
SELECT 1, 'a1', 100, 1, 500000, '2013-06-14 12:40:45'
  FROM
(
select a.N + b.N * 10 + c.N * 100 + d.N * 1000 + e.N * 10000 + f.N * 100000 + 1 N
from (select 0 as N union all select 1 union all select 2 union all select 3 union all select 4 union all select 5 union all select 6 union all select 7 union all select 8 union all select 9) a
      , (select 0 as N union all select 1 union all select 2 union all select 3 union all select 4 union all select 5 union all select 6 union all select 7 union all select 8 union all select 9) b
      , (select 0 as N union all select 1 union all select 2 union all select 3 union all select 4 union all select 5 union all select 6 union all select 7 union all select 8 union all select 9) c
      , (select 0 as N union all select 1 union all select 2 union all select 3 union all select 4 union all select 5 union all select 6 union all select 7 union all select 8 union all select 9) d
      , (select 0 as N union all select 1 union all select 2 union all select 3 union all select 4 union all select 5 union all select 6 union all select 7 union all select 8 union all select 9) e
      , (select 0 as N union all select 1 union all select 2 union all select 3 union all select 4 union all select 5 union all select 6 union all select 7 union all select 8 union all select 9) f
) t

It took on my box (MacBook Pro 16GB RAM, 2.6Ghz Intel Core i7) ~8 sec to complete

Query OK, 1000000 rows affected (7.63 sec)
Records: 1000000  Duplicates: 0  Warnings: 0

UPDATE1 Now a version of a stored procedure that uses a prepared statement

DELIMITER $$
CREATE PROCEDURE `inputRowsNoRandom`(IN NumRows INT)
BEGIN
    DECLARE i INT DEFAULT 0;

    PREPARE stmt 
       FROM 'INSERT INTO `entity_versionable` (fk_entity, str1, str2, bool1, double1, date)
             VALUES(?, ?, ?, ?, ?, ?)';
    SET @v1 = 1, @v2 = 'a1', @v3 = 100, @v4 = 1, @v5 = 500000, @v6 = '2013-06-14 12:40:45';

    WHILE i < NumRows DO
        EXECUTE stmt USING @v1, @v2, @v3, @v4, @v5, @v6;
        SET i = i + 1;
    END WHILE;

    DEALLOCATE PREPARE stmt;
END$$
DELIMITER ;

Completed in ~3 min:

mysql> CALL inputRowsNoRandom(1000000);
Query OK, 0 rows affected (2 min 51.57 sec)

Feel the difference 8 sec vs 3 min

UPDATE2 To speed things up we can explicitly use transactions and commit insertions in batches. So here it goes an improved version of the SP.

DELIMITER $$
CREATE PROCEDURE inputRowsNoRandom1(IN NumRows BIGINT, IN BatchSize INT)
BEGIN
    DECLARE i INT DEFAULT 0;

    PREPARE stmt 
       FROM 'INSERT INTO `entity_versionable` (fk_entity, str1, str2, bool1, double1, date)
             VALUES(?, ?, ?, ?, ?, ?)';
    SET @v1 = 1, @v2 = 'a1', @v3 = 100, @v4 = 1, @v5 = 500000, @v6 = '2013-06-14 12:40:45';

    START TRANSACTION;
    WHILE i < NumRows DO
        EXECUTE stmt USING @v1, @v2, @v3, @v4, @v5, @v6;
        SET i = i + 1;
        IF i % BatchSize = 0 THEN 
            COMMIT;
            START TRANSACTION;
        END IF;
    END WHILE;
    COMMIT;
    DEALLOCATE PREPARE stmt;
END$$
DELIMITER ;

Results with different batch sizes:

mysql> CALL inputRowsNoRandom1(1000000,1000);
Query OK, 0 rows affected (27.25 sec)

mysql> CALL inputRowsNoRandom1(1000000,10000);
Query OK, 0 rows affected (26.76 sec)

mysql> CALL inputRowsNoRandom1(1000000,100000);
Query OK, 0 rows affected (26.43 sec)

You see the difference yourself. Still > 3 times worse than cross join.



来源:https://stackoverflow.com/questions/17136592/mysql-fill-a-table-within-a-stored-procedure-efficiently

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!