c++ 二叉树遍历

时光总嘲笑我的痴心妄想 提交于 2019-11-26 23:16:07

题目描述

二叉树是每个内部结点最多只有两个子结点且两个子结点有序的树。如下图就是一棵二叉树:

对于一棵二叉树,有三种基本遍历方式:
1.前序遍历:先访问根结点,然后再前序遍历左子树,最后前序遍历右子树;

2.中序遍历:先中序遍历左子树,然后访问根结点,最后中序遍历右子树;

3.后序遍历:先后序遍历左子树,然后后序遍历右子树,最后访问根结点。

对于上图,前序遍历的结果是ABDEHCFGI。中序遍历的结果是DBEHAFCIG,后序遍历的结果是DHEBFIGCA。

现在给出二叉树的前序和中序遍历,请输出相应的后序遍历。

输入

第一行前序遍历的结果

第二行中序遍历的结果

都是大写字母,且结点的标识不重复,最多只有100个结点。

输出

输出后序遍历的结果

样例输入

ABDEHCFGI DBEHAFCIG

样例输出

DHEBFIGCA

Source Code

#include <iostream> #include <string.h> using namespace std; char a[110],b[110];//a[]是前序遍历的结果  b[]是中序遍历的结果 void dfs(int f1,int e1,int f2,int e2) {     if(f1>e1) return;//如果找不到子节点就退出(起点大于终点)     int rt=f1;//rt是根节点     int p = 0;     //计算出左子树或者右子树的下一层根节点     for(int i=f2;i<=e2;i++)         if(b[i]==a[rt])//如果找到了顶点         {             p=i;//p代表顶点在b[]里面的位置  即b[p]             break;         }     int ls=p-1-f2+1;//ls表示长度     //int rs=e2-(p+1)+1;     dfs(f1+1,f1+1+ls-1,f2,p-1);//递归处理左子树     //f1+1:a[]的左子树的起点  f1+1+ls-1:a[]的左子树的终点     //f2:b[]的左子树的起点  p-1:b[]的左子树的终点     dfs(f1+1+ls-1+1,e1,p+1,e2);//递归处理右子树     //f1+1+ls-1+1:a[]的右子树的起点  e1:a[]的右子树的终点     //p+1:b[]的右子树的起点  e2:b[]的右子树的终点     printf("%c",a[rt]);//如果这是一个叶节点(既没有左子树,也没有右子树),就输出它 } int main() {     //scanf("%s%s",a,b);     cin >> a >> b;     dfs(0,int(strlen(a))-1,0,int(strlen(b))-1);//起点     cout << endl;     return 0; } /*  思路总结:  先以a为顶点,递归寻找a的左子树  如果a有左子树,先判断下一个节点b是否为顶点 (判断b是否为顶点:判断b是否有左右子树)  找到b的左子树的下一个节点d 再继续判断d是否有左右子树  如果没有,d为叶节点  在找到b的右子树的下一个节点e 判断e的左右子树 如果有,继续判断下一个节点h是否有左右子树 直到找到h叶子节点  在找到a的右子树的下一个节点c 判断c的左右子树 如果有,继续判断下一个节点 f和g 是否有左右子树 直到找到i叶子节点  每次找到叶子节点就输出 */
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!